Advertisement

Parallel Computation Using GPGPU to Simulate Crowd Evacuation Behaviors: Planning Effective Evacuation Guidance at Emergencies

  • Toshinori Niwa
  • Masaru Okaya
  • Tomoichi Takahashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

We propose parallel computing to simulate crowd evacuation behavior. It allows evacuation of ten thousands of agents to be simulated faster than does the existing system. Our prototype system consists of a new traffic simulator and scenario generator. The traffic simulation system uses a general purpose graphics processing unit (GPGPU) and simulates the agents’ movements in a three-dimensional map. Our proposal enables realistic evacuation simulations and provides a platform that widens the applications of RoboCup Rescue Simulation to, for example, crowd evacuation from buildings. The evacuation simulations help security offices to prepare manuals for emergencies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In: IEEE International Conference on System, Man, and Cybernetics (1999)Google Scholar
  2. 2.
    Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster rescue simulation - from test-bed of multiagent system to practical application. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 102–111. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Takeuchi, I., Kakumoto, S., Goto, Y.: Towards an integrated earthquake disaster simulation system. In: First International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster (2003)Google Scholar
  4. 4.
    Skinner, C., Barley, M.: Robocup rescue simulation competition: Status report. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 632–639. Springer, Heidelberg (2006)Google Scholar
  5. 5.
  6. 6.
    Averill, J.D., Mileti, D.S., Peacock, R.D., Kuligowski, E.D., Groner, N.E.: Occupant behavior, egress, and emergency communications (NIST NCSTAR 1-7). Technical report. National Institute of Standards and Technology, Gaitherburg (2005)Google Scholar
  7. 7.
    C. O. G. of Japan. Prevention Disaster Conference, the Great West Japan Earthquake and Tsunami. Report on evacuation behavior of people (in Japanese), http://www.bousai.go.jp/jishin/chubou/higashinihon/7/1.pdf (date: February 9, 2012)
  8. 8.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. NATURE 407, 487–490 (2000)CrossRefGoogle Scholar
  9. 9.
    Okaya, M., Takahashi, T.: Evacuation simulation with guidance for anti-disaster planning. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 202–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Toshinori Niwa
    • 1
  • Masaru Okaya
    • 1
  • Tomoichi Takahashi
    • 1
  1. 1.Meijo UniversityAichiJapan

Personalised recommendations