Network-Based Dissolution

  • René van Bevern
  • Robert Bredereck
  • Jiehua Chen
  • Vincent Froese
  • Rolf Niedermeier
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

Abstract

We introduce a graph-theoretic dissolution model that applies to a number of redistribution scenarios such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution of their loads to neighboring vertices in a perfectly balanced way.

We investigate how the underlying graph structure, the pre-knowledge of which vertices should be deleted, and the relation between old and new vertex loads influence the computational complexity of the underlying graph problems. Our results establish a clear borderline between tractable and intractable cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman, M.: Districting Principles and Democratic Representation. PhD thesis, California Institute of Technology (1998)Google Scholar
  2. 2.
    Berman, F., Johnson, D., Leighton, T., Shor, P.W., Snyder, L.: Generalized planar matching. Journal of Algorithms 11(2), 153–184 (1990)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    van Bevern, R., Bredereck, R., Bulteau, L., Chen, J., Froese, V., Niedermeier, R., Woeginger, G.J.: Star partitions of perfect graphs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 174–185. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Duque, J.C.: Design of Homogeneous Territorial Units: A Methodological Proposal and Applications. PhD thesis, University of Barcelona (2004)Google Scholar
  5. 5.
    Duque, J.C., Ramos, R., Surinach, J.: Supervised regionalization methods: A survey. International Regional Science Review 30(3), 195–220 (2007)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman (1979)Google Scholar
  7. 7.
    Hell, P., Kirkpatrick, D.G., Kratochvíl, J., Kríz, I.: On restricted two-factors. SIAM Journal on Discrete Mathematics 1(4), 472–484 (1988)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Landau, Z., Su, F.: Fair division and redistricting. Social Choice and Welfare 32(3), 479–492 (2009)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Maravalle, M., Simeone, B.: A spanning tree heuristic for regional clustering. Communications in Statistics—Theory and Methods 24(3), 625–639 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Mehrota, A., Johnson, E.L., Nemhauser, G.L.: An optimization based heuristic for political districting. Management Science 44(8), 1100–1114 (1998)CrossRefGoogle Scholar
  11. 11.
    Puppe, C., Tasnádi, A.: A computational approach to unbiased districting. Mathematical and Computer Modelling 48, 1455–1460 (2008)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Puppe, C., Tasnádi, A.: Optimal redistricting under geographical constraints: Why “pack and crack” does not work. Economics Letters 105(1), 93–96 (2009)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proc. 44th STOC, pp. 887–898. ACM (2012)Google Scholar
  14. 14.
    Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Computer Science Review 1(1), 12–26 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • René van Bevern
    • 1
  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
  • Vincent Froese
    • 1
  • Rolf Niedermeier
    • 1
  • Gerhard J. Woeginger
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.Department of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations