Advertisement

A Note on the Minimum Distance of Quantum LDPC Codes

  • Nicolas Delfosse
  • Zhentao Li
  • Stéphan Thomassé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

Abstract

We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi [14]. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Zémor [3]. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions.

Keywords

Minimum Distance Cayley Graph LDPC Code Minimum Cardinality Quantum Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bombin, H., Martin-Delgado, M.: Topological quantum distillation. Physical Review Letters 97, 180501 (2006)CrossRefGoogle Scholar
  2. 2.
    Calderbank, A., Shor, P.: Good quantum error-correcting codes exist. Physical Review A 54(2), 1098 (1996)CrossRefGoogle Scholar
  3. 3.
    Couvreur, A., Delfosse, N., Zémor, G.: A construction of quantum LDPC codes from Cayley graphs. IEEE Transactions on Information Theory 59(9), 6087–6098 (2013)CrossRefGoogle Scholar
  4. 4.
    Delfosse, N.: Tradeoffs for reliable quantum information storage in surface codes and color codes. In: Proc. of IEEE International Symposium on Information Theory, ISIT 2013, pp. 917–921 (2013)Google Scholar
  5. 5.
    Delfosse, N., Zémor, G.: Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel. Quantum Information & Computation 13(9-10), 793–826 (2013)MathSciNetGoogle Scholar
  6. 6.
    Fetaya, E.: Bounding the distance of quantum surface codes. Journal of Mathematical Physics 53, 062202 (2012)Google Scholar
  7. 7.
    Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. Journal für die reine und angewandte Mathematik (Crelles Journal) 2012(671), 49–83 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Freedman, M., Meyer, D., Luo, F.: Z2-systolic freedom and quantum codes. Mathematics of Quantum Computation, pp. 287–320. Chapman & Hall/CRC (2002)Google Scholar
  9. 9.
    Gallager, R.: Low Density Parity-Check Codes. Ph.D. thesis, Massachusetts Institute of Technology (1963)Google Scholar
  10. 10.
    Gottesman, D.: What is the overhead required for fault-tolerant quantum computation? arXiv preprint arXiv:1310.2984 (2013)Google Scholar
  11. 11.
    Guth, L., Lubotzky, A.: Quantum error-correcting codes and 4-dimensional arithmetic hyperbolic manifolds. arXiv preprint arXiv:1310.5555 (2013)Google Scholar
  12. 12.
    Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics 303(1), 27 (2003)Google Scholar
  13. 13.
    Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    MacKay, D., Mitchison, G., Shokrollahi, A.: More sparse-graph codes for quantum error-correction (2007), http://www.inference.phy.cam.ac.uk/mackay/cayley.pdf
  15. 15.
    MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Transaction on Information Theory 50(10), 2315–2330 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Matousek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points. arXiv preprint arXiv:1102.3515 (2011)Google Scholar
  17. 17.
    Meshulam, R., Wallach, N.: Homological connectivity of random k-dimensional complexes. Random Structures & Algorithms 34(3), 408–417 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press (2000)Google Scholar
  19. 19.
    Steane, A.: Multiple-particle interference and quantum error correction. Proc. of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452(1996), 2551–2577 (1954)MathSciNetGoogle Scholar
  20. 20.
    Tillich, J.P., Zémor, G.: Quantum LDPC codes with positive rate and minimum distance proportional to n 1/2. In: Proc. of IEEE International Symposium on Information Theory, ISIT 2009, pp. 799–803 (2009)Google Scholar
  21. 21.
    Zémor, G.: On cayley graphs, surface codes, and the limits of homological coding for quantum error correction. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 259–273. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicolas Delfosse
    • 1
  • Zhentao Li
    • 2
  • Stéphan Thomassé
    • 3
  1. 1.Département de PhysiqueUniversité de SherbrookeSherbrookeCanada
  2. 2.Département d’Informatique UMR CNRS 8548École Normale SupérieureFrance
  3. 3.LIP, UMR 5668, École Normale Supérieure de Lyon - CNRS - UCBL - INRIAUniversité de LyonFrance

Personalised recommendations