Combinatorial Voter Control in Elections

  • Jiehua Chen
  • Piotr Faliszewski
  • Rolf Niedermeier
  • Nimrod Talmon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

Abstract

Voter control problems model situations such as an external agent trying to affect the result of an election by adding voters, for example by convincing some voters to vote who would otherwise not attend the election. Traditionally, voters are added one at a time, with the goal of making a distinguished alternative win by adding a minimum number of voters. In this paper, we initiate the study of combinatorial variants of control by adding voters: In our setting, when we choose to add a voter v, we also have to add a whole bundle κ(v) of voters associated with v. We study the computational complexity of this problem for two of the most basic voting rules, namely the Plurality rule and the Condorcet rule.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholdi III, J.J., Trick, M.: Stable matching with preferences derived from a psychological model. Oper. Res. Lett. 5(4), 165–169 (1986)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election. Math. Comput. Model. 16(8-9), 27–40 (1992)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of voting. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Black, D.: On the rationale of group decision making. J. Polit. Econ. 56(1), 23–34 (1948)CrossRefGoogle Scholar
  5. 5.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artificial Intelligence Res. 21, 135–191 (2004)MATHMathSciNetGoogle Scholar
  6. 6.
    Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.A.: Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates. In: Proc. 24th AAAI, pp. 715–722 (2010)Google Scholar
  7. 7.
    Bredereck, R., Chen, J., Woeginger, G.: A characterization of the single-crossing domain. Soc. Choice Welf. 41(4), 989–998 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices matter for the parameterized complexity of shift bribery. In: Proc. 28th AAAI (to appear, 2014)Google Scholar
  9. 9.
    Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Artificial Intelligence Res. 35, 161–191 (2009)MATHMathSciNetGoogle Scholar
  10. 10.
    Conitzer, V., Lang, J., Xia, L.: How hard is it to control sequential elections via the agenda? In: Proc. 21st IJCAI, pp. 103–108 (July 2009)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
  12. 12.
    Elkind, E., Faliszewski, P., Slinko, A.: Clone structures in voters’ preferences. In: Proc. 13th EC, pp. 496–513 (2012)Google Scholar
  13. 13.
    Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proc. 18th ECAI, pp. 366–370 (2008)Google Scholar
  14. 14.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. Inform. and Comput. 209(2), 89–107 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Weighted electoral control. In: Proc. 12th AAMAS, pp. 367–374 (2013)Google Scholar
  16. 16.
    Golab, L., Karloff, H., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies. In: In 35th PVLDB, vol. 2(1), pp. 574–585 (2009)Google Scholar
  17. 17.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: The complexity of precluding an alternative. Artif. Intell. 171(5-6), 255–285 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410, 2746–2753 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Magiera, K., Faliszewski, P.: How hard is control in single-crossing elections? In: Proc. 21st ECAI (to appear, 2014)Google Scholar
  22. 22.
    Roberts, K.W.: Voting over income tax schedules. J. Public Econ. 8, 329–340 (1977)CrossRefGoogle Scholar
  23. 23.
    Rothkopf, M.H., Pekeč, A., Harstad, R.M.: Computationally manageable combinational auctions. Manage. Sci. 44(8), 1131–1147 (1998)MATHGoogle Scholar
  24. 24.
    Sandholm, T.: Optimal winner determination algorithms. In: Cramton, Shoham, Steinberg (eds.) Combinatorial Auctions. ch. 14. MIT Press (2006)Google Scholar
  25. 25.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jiehua Chen
    • 1
  • Piotr Faliszewski
    • 2
  • Rolf Niedermeier
    • 1
  • Nimrod Talmon
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations