Skip to main content

Constraint-Handling with Support Vector Decoders

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 449))

Abstract

A comparably new application for support vector machines is their use for meta-modeling the feasible region in constrained optimization problems. Applications have already been developed to optimization problems from the smart grid domain. Still, the problem of a standardized integration of such models into (evolutionary) optimization algorithms was as yet unsolved. We present a new decoder approach that constructs a mapping from the unit hyper cube to the feasible region from the learned support vector model. Thus, constrained problems are transferred into unconstrained ones by space mapping for easier search. We present result from artificial test cases as well as simulation results from smart grid use cases for real power planning scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4, 1–32 (1996)

    Article  Google Scholar 

  2. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft Comput. 2010, 3:1–3:19 (2010)

    Google Scholar 

  3. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden (2010)

    Google Scholar 

  4. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence. Barcelona, vol. 2, pp. 91–105. SciTePress, Spain (2013)

    Google Scholar 

  5. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. J. Exp. Theor. Artif. Intell. 2, 101–115 (1990)

    Article  Google Scholar 

  7. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7, 19–44 (1999)

    Article  Google Scholar 

  8. Kim, D.G.: Riemann mapping based constraint handling for evolutionary search. In: SAC, pp. 379–385 (1998)

    Google Scholar 

  9. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), Paris, France (2011)

    Google Scholar 

  10. Blank, M., Gerwinn, S., Krause, O., Lehnhoff, S.: Support vector machines for an efficient representation of voltage band constraints. In: Innovative Smart Grid Technologies, IEEE PES (2011)

    Google Scholar 

  11. Pereira, J., Viana, A., Lucus, B., Matos, M.: A meta-heuristic approach to the unit commitment problem under network constraints. Int. J. Energ. Sect. Manage. 2, 449–467 (2008)

    Article  Google Scholar 

  12. Guan, X., Zhai, Q., Papalexopoulos, A.: Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming. In: IEEE Power Engineering Society General Meeting, vol. 2, p. 1100 (2003)

    Google Scholar 

  13. Tröschel, M., Appelrath, H.-J.: Towards reactive scheduling for large-scale virtual power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 141–152. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., Akkermans, H.: Agent-based electricity balancing with distributed energy resources, a multiperspective case study. In: Hawaii International Conference on System Sciences, p. 173 (2008)

    Google Scholar 

  15. Mihailescu, R.-C., Vasirani, M., Ossowski, S.: Dynamic coalition adaptation for efficient agent-based virtual power plants. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973, pp. 101–112. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based control for decentralised demand side management in the smart grid. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS, IFAAMAS, pp. 5–12 (2011)

    Google Scholar 

  17. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.: Input space vs. feature space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  18. Ben-Hur, A., Siegelmann, H.T., Horn, D., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)

    Google Scholar 

  19. Juszczak, P., Tax, D., Duin, R.P.W.: Feature scaling in support vector data description. In: Deprettere, E., Belloum, A., Heijnsdijk, J., van der Stappen, F. (eds.) Proceedings of the ASCI 2002, 8th Annual Conference of the Advanced School for Computing and Imaging, pp. 95–102 (2002)

    Google Scholar 

  20. Kwok, J., Tsang, I.: The pre-image problem in kernel methods. IEEE Trans. Neural Netw. 15, 1517–1525 (2004)

    Article  Google Scholar 

  21. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. In: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II. MIT Press, Cambridge, pp. 536–542 (1999)

    Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, IEEE, pp. 1942–1948 (1995)

    Google Scholar 

  23. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Molga, M., Smutnicki, C.: Test functions for optimization needs. Technical report (2005). http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

  25. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)

    MATH  Google Scholar 

  26. Richardson, J.T., Palmer, M.R., Liepins, G.E., Hilliard, M.R.: Some guidelines for genetic algorithms with penalty functions. In: Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, pp. 191–197 (1989)

    Google Scholar 

  27. Himmelblau, D.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  28. Thomas, B.: Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik, Betriebsdaten. Vogel Buchverlag (2007)

    Google Scholar 

  29. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a new evolutionary computation. Advances in the Estimation of Distribution Algorithms, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Acknowledgements

The Lower Saxony research network ‘Smart Nord’ acknowledges the support of the Lower Saxony Ministry of Science and Culture through the Niedersächsisches Vorab grant programme (grant ZN 2764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremer, J., Sonnenschein, M. (2014). Constraint-Handling with Support Vector Decoders. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2013. Communications in Computer and Information Science, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44440-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44440-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44439-9

  • Online ISBN: 978-3-662-44440-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics