Abstract
Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time Quantum Walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 121–131. Springer, Heidelberg (2013)
Biasotti, S., Marini, S., Mortara, M., Patané, G., Spagnuolo, M., Falcidieno, B.: 3D shape matching through topological structures. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 194–203. Springer, Heidelberg (2003)
Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proc. IEEE Int. Conf. Data Mining (ICDM), pp. 74–81 (2005)
Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon divergence. Physical Review A 79, 052311 (2009)
Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: International Conference on Machine Learning, pp. 225–232 (2005)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA (1999)
Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., et al.: String 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research 37(suppl. 1), 412–416 (2009)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. Int. Conf. Machine Learning (ICML), pp. 321–328 (2003)
Kempe, J.: Quantum random walks: an introductory overview. Contemporary Physics 44, 307–327 (2003)
Konder, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. Int. Conf. Machine Learning (ICML), pp. 315–322 (2002)
Mowshowitz, A.: Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics 30(1), 175–204 (1968)
Mowshowitz, A.: Graphs, groups and matrices. In: Proc. 25th Summer Meeting Canad. Math. Congress, Congr. Numer., vol. 4, pp. 509–522 (1971)
S. A. Nene, S. K. Nayar, H. Murase, Columbia object image library (coil-20), Dept. Comput. Sci., Columbia Univ., New York, http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.: Characterising graph symmetries through quantum Jensen-Shannon divergence. Physical Review E 88(3), 032806 (2013)
Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on topological and label attributes. Statistical Analysis and Data Mining 5, 265–283 (2012)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)
Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics (2009)
Torsello, A.: On the state alignment of the Quantum Jensen Shannon Divergence. Technical report DAIS-2014-1, DAIS, Università Ca’ Foscari Venezia (2014), http://www.dsi.unive.it/~atorsell/DAIS-2014-1.pdf
Vert, J.-P.: The optimal assignment kernel is not positive definite, arXiv:0801.4061 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Torsello, A., Gasparetto, A., Rossi, L., Bai, L., Hancock, E.R. (2014). Transitive State Alignment for the Quantum Jensen-Shannon Kernel. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2014. Lecture Notes in Computer Science, vol 8621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44415-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-44415-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44414-6
Online ISBN: 978-3-662-44415-3
eBook Packages: Computer ScienceComputer Science (R0)