Skip to main content

Induced Genetic Variation, TILLING and NGS-Based Cloning

  • Chapter
  • First Online:
Biotechnological Approaches to Barley Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

Mutagenesis is one of the most important tools available to barley geneticists and breeders in order to investigate trait inheritance and to provide useful genetic variation to breeding programmes. Recent advancements in genomics, including the increasing availability of barley genome sequence information, are making mutagenesis even more valuable. In a forward genetics perspective (from traits to genes), the main improvements are being obtained by the exploitation of high-throughput phenotyping and genotyping. SNP genotyping and next-generation sequencing (NGS) platforms enable to genetically and physically map, or even to clone, target mutant genes in single-step experiments, once segregating populations are available. In barley, reverse genetics (from genes to traits), both transposon-based mutagenised populations and multiple TILLING resources, are becoming available or increasing their coverage. These resources too can be made more effective if matched with NGS-based molecular screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Ryuto H, Fukunishi M (2012a) Ion beam radiation mutagenesis. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 99–106

    Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012b) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  PubMed  Google Scholar 

  • Ayliffe MA, Pryor AJ (2011) Activation tagging and insertional mutagenesis in barley. Methods Mol Biol 678:107–128

    CAS  PubMed  Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    CAS  PubMed  Google Scholar 

  • Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755

    CAS  PubMed  Google Scholar 

  • Bentley A, MacLennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in Drosophila. Genetics 156:1169–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaby-Haas CE, de Crécy-Lagard V (2011) Mining high-throughput experimental data to link gene and function. Trends Biotechnol 29:174–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    CAS  PubMed  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bovina R, Talamè V, Ferri M, Tuberosa R, Chmielewska B, Szarejko I, Sanguineti MC (2011a) Identification of root morphology mutants in barley. Plant Genet Resour 9:357–360

    Google Scholar 

  • Bovina R, Talamè V, Salvi S, Sanguineti MC, Trost P, Sparla F, Tuberosa R (2011b) Starch metabolism mutants in barley: a TILLING approach. Plant Genet Resour 9:170–173

    CAS  Google Scholar 

  • Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, Bordeos A, Wang GL, Leung H, Leach JE (2009) Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics 10:129

    PubMed Central  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    CAS  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    CAS  PubMed  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler PM, Harding CA (2013) ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ Della gene. J Exp Bot 64:1603–1613. doi:10.1093/jxb/ert022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    PubMed Central  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) A homologue of Antirrhinum CENTRORADIALIS is a component of the quantitative photoperiod and vernalization independent EARLINESS PER SE 2 locus in cultivated barley. Nat Genet 44:1388–1392

    CAS  PubMed  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    CAS  PubMed  Google Scholar 

  • Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V, Bregitzer P, Lemaux PG, Hayes PM (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272:181–193

    CAS  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    CAS  Google Scholar 

  • Cuperus JT, Montgomery TA, Fahlgren N, Burke RT, Townsend T, Sullivan CM, Carringtonb JC (2010) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci U S A 107:466–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    CAS  Google Scholar 

  • Dong C, Vincent K, Sharp S (2009) Simultaneous mutation detection of three homoeologous genes in wheat by high resolution melting analysis and mutation surveyor. BMC Plant Biol 9:143

    PubMed Central  PubMed  Google Scholar 

  • Dormling I, Gustafsson Ã…, Jung HR, von Wettstein D (1966) Phytotron cultivation of Svalöf’s Bonus barley and its mutant Svalöf’s Mari. Hereditas 56:221–237

    Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Earley EJ, Jones CD (2011) Next-generation mapping of complex traits with phenotype-based selection and introgression. Genetics 189:1203–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forster BP (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317–328

    CAS  Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethley I, Thomas WTB (2007) The barley phytomer. Ann Bot 100:725–733

    PubMed Central  PubMed  Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Thomas WTB, Leader D, Shaw P, Lyon J, Waugh R (2012) Mutant phenotyping and pre-breeding in barley. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 327–346

    Google Scholar 

  • Franckowiak JD, Lundqvist U (2009) Rules for nomenclature and gene symbolization in barley. Barley Genet Newsl 39:77–81

    Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258

    PubMed Central  PubMed  Google Scholar 

  • Greco R, Ouwerkerk PBF, Sallaud C, Kohli A, Colombo L, Puigdomènech P, Guiderdoni E, Christou P, Hoge JHC, Pereira A (2001) Transposon insertional mutagenesis in rice. Plant Physiol 125:1175–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruszka D, Szarejko I, Maluszynski M (2012) Sodium azide as a mutagen. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 159–166

    Google Scholar 

  • Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798

    CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    CAS  PubMed  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    CAS  PubMed  Google Scholar 

  • Houston K, Druka A, Bonar N, Macaulay M, Lundqvist U, Franckowiak J, Morgante M, Stein N, Waugh R (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45

    CAS  PubMed  Google Scholar 

  • Husaini AM, Rashid Z, Mir RU, Aquil B (2011) Approaches for gene targeting and targeted gene expression in plants. GM Crops 2:150–162

    PubMed  Google Scholar 

  • International Barley Genome Sequencing Consortium (IBGSC) (2012) A physical, genetical and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Phytol 191:915–925

    CAS  PubMed  Google Scholar 

  • Kharkwal MC (2012) A brief history of plant mutagenesis. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant Mutation Breeding and Biotechnology. CABI, Wallingford, pp 21–30

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Kleinhofs A, Owais WM, Nilan RA (1978) Azide. Mutat Res 55:165–195

    CAS  PubMed  Google Scholar 

  • Kodym A, Afza R, Forster BP, Ukai Y, Nakagawa H, Mba C (2012) Methodology for physical and chemical mutagenic treatments. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 169–180

    Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    CAS  PubMed  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104:1424–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koornneef M (2002) Classical mutagenesis in higher plants. In: Gilmartin PM, Bowler C (eds) Molecular plant biology. Oxford University Press, Oxford, pp 1–10

    Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50:1215–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurowska M, Labocha-PawÅ‚owska A, Gnizda D, Maluszynski M, Szarejko I (2012) Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res 738–739:52–70

    PubMed  Google Scholar 

  • Lababidi S, Mejlhede N, Rasmussen SK, Backes G, Al-Said W, Baum M, Jahoor A (2009) Identification of barley mutants in the cultivar ‘Lux’ at the Dhn loci through TILLING. Plant Breed 128:332–336

    CAS  Google Scholar 

  • Lazarow K, Lütticke S (2009) An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics 10:55

    PubMed Central  PubMed  Google Scholar 

  • Leitao JM (2012) Chemical mutagenesis. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 135–158

    Google Scholar 

  • Li G, Gelernter J, Kranzler HR, Zhao H (2012) M3: an improved SNP calling algorithm for Illumina BeadArray data. Bioinformatics 28:358–365

    PubMed Central  PubMed  Google Scholar 

  • Lundqvist U (1992) Mutation research in barley. Dissertation, Department of Plant Breeding Research, The Swedish University of Agricultural Sciences, pp 11–38

    Google Scholar 

  • Lundqvist U (2005) The Swedish collection of barley mutants held at the Nordic Genebank. Barley Genet Newsl 35:150–154

    Google Scholar 

  • Lundqvist U (2009) Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 39–43

    Google Scholar 

  • Lundqvist U, Franckowiak J, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–44

    Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Kahl G, Meksem K (eds) The handbook of plant mutation screening: mining of natural and induced alleles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–16

    Google Scholar 

  • Mahfouz MM, Li L (2011) TALE nucleases and next generation GM crops. GM Crops 2:99–103

    PubMed  Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynska J (2003) Mutation techniques. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier, San Diego, CA, pp 186–201

    Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KF, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    CAS  PubMed  Google Scholar 

  • Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mba C, Afza R, Shu QY (2012) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu QJ, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 83–90

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Heinkoff S (2000) Targeting Induced Lesions INGenomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • McElroy D, Louwerse JD, McEIroy SM, Lemaux PG (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J 11:157–165

    CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    CAS  PubMed  Google Scholar 

  • Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, von Korff M (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics (in press)

    Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    CAS  PubMed  Google Scholar 

  • Petr J, Lipavsky J, Hradecká D (2002) Production process in old and modern spring barley varieties. Die Bodenkultur 53:19–27

    Google Scholar 

  • Pozzi C, di Pietro D, Halas G, Roig C, Salamini F (2003) Integration of a barley (Hordeum vulgare) molecular linkage map with the position of genetic loci hosting 29 developmental mutants. Heredity 90:390–396

    CAS  PubMed  Google Scholar 

  • Raghavan C, Naredo M, Wang H, Atienza G, Liu B, Qiu F, McNally K, Leung H (2007) Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed 19:87–101

    CAS  Google Scholar 

  • Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252

    CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    CAS  PubMed  Google Scholar 

  • Rigola D, van Oeveren J, Janssen A, Bonné A, Schneiders H, van der Poel HJA, van Orsouw NJ, Hogers RCJ, de Both MTJ, van Eijk MJT (2009) High-throughput detection of induced mutations and natural variation using KeyPointâ„¢ technology. PLoS One 4:e4761

    PubMed Central  PubMed  Google Scholar 

  • Roberts AW, Dimos CS, Budziszek MJ Jr, Goss CA, Lai V (2011) Knocking out the wall: protocols for gene targeting in Physcomitrella patens. Methods Mol Biol 715:273–290

    CAS  PubMed  Google Scholar 

  • Romero Loli M, Gomez Pando L (2001) Barley breeding in Peru. In: Vivar HE, McNab A (eds) Breeding barley in the new millenium, Proceedings of an international symposium. CYMMIT, Mexico, DF

    Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci U S A 103:18656–18661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Method Enzymol 101:202–211

    CAS  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen JE, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    CAS  PubMed  Google Scholar 

  • Scholz S, Lörz H, Lütticke S (2001) Transposition of maize transposable element Ac in barley (Hordeum vulgare L.). Mol Gen Genet 264:653–661

    CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    CAS  PubMed  Google Scholar 

  • Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O’Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai J, Hunter CT 3rd, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, McCarty DR (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116

    PubMed Central  PubMed  Google Scholar 

  • Shu QY, Shirasawa K, Hoffmann M, Hurlebaus J, Nishio T (2012) Mutation techniques and methods for mutation detection and screening in plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 241–256

    Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Å imková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, Bartos J, Safár J, Close TJ, Dolezel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    PubMed Central  PubMed  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    CAS  PubMed  Google Scholar 

  • Singh S, Tan HQ, Singh J (2012) Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 12:131–141

    CAS  PubMed  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    CAS  PubMed  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt KM, Steine MN, Goodstal JF, Knauf VC (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sreenivasulu N, Graner A, Wobus U (2008) Barley genomics: an overview. Int J Plant Genomics 2008:486258

    PubMed Central  PubMed  Google Scholar 

  • Stadler LJ (1928) Mutations in barley induced by X-rays and radium. Science 68:186–187

    CAS  PubMed  Google Scholar 

  • Stadler LJ (1930) Some genetic effect of X-rays in plants. J Hered 21:3–19

    Google Scholar 

  • Szarejko I, Maluszynski M (1980) Translocations and inversions in barley induced by fast neutrons and N-nitroso-N-methylurea (MNUA). Barley Genet Newsl 10:67–69

    Google Scholar 

  • Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485

    PubMed  Google Scholar 

  • Talamè V, Bovina R, Salvi S, Sanguineti MC, Piffanelli P, Lundquist U, Tuberosa R (2009) TILLING with TILLMore. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 240–242

    Google Scholar 

  • Tanaka A, Shikazano N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    CAS  PubMed  Google Scholar 

  • Teo YY (2012) Genotype calling for the Illumina platform. Method Mol Biol 850:525–538

    Google Scholar 

  • Thole V, Peraldi A, Worland B, Nicholson P, Doonan JH, Vain P (2012) T-DNA mutagenesis in Brachypodium distachyon. J Exp Bot 63:567–576

    CAS  PubMed  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2012) A protocol for TILLING and Eco-TILLING. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 269–286

    Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:7–20

    Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125

    CAS  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai H, Nitcher R, Howell TR, Akhunov E, Tai TH, Dubcovsky J, Comai L (2012) High-throughput sequencing makes TILLING more fun. Plant and Animal Genome Conference XX, San Diego, CA, W217

    Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115

    PubMed Central  PubMed  Google Scholar 

  • Uchida N, Sakamoto T, Kurata T, Tasaka M (2011) Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing. Plant Cell Physiol 52:716–722

    CAS  PubMed  Google Scholar 

  • van Harten AM (1998) Induction of mutation. In: van Harten AM (ed) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge, pp 111–160

    Google Scholar 

  • van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J, Yalcin F, Janssen A, Volpin H, Stormo KE, Bogden R, van Eijk MJ, Prins M (2011) Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res 21:618–625

    PubMed Central  PubMed  Google Scholar 

  • von Korpf M, Leon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464

    Google Scholar 

  • Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q, Sang T, Han B (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122:327–340

    PubMed Central  PubMed  Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotechnol J 10:761–772

    CAS  PubMed  Google Scholar 

  • Waugh R, Leader DJ, McCallum N, Caldwell D (2006) Harvesting the potential of induced biological diversity. Trends Plant Sci 11:71–79

    CAS  PubMed  Google Scholar 

  • White PJ, Bengough AG, Bingham IJ, George TS, Karley AJ, Valentine TA (2009) Induced mutations affecting root architecture and mineral acquisition in barley. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 338–340

    Google Scholar 

  • Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmanna K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A 109:4326–4331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Iwona Szarejko and Roberto Tuberosa for useful discussions, Brian Forster for suggestions over an earlier version of this manuscript and Riccardo Bovina, Simona Corneti and Valentina Talamè for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Salvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salvi, S., Druka, A., Milner, S.G., Gruszka, D. (2014). Induced Genetic Variation, TILLING and NGS-Based Cloning. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_15

Download citation

Publish with us

Policies and ethics