Advertisement

Maliciously Circuit-Private FHE

  • Rafail Ostrovsky
  • Anat Paskin-Cherniavsky
  • Beni Paskin-Cherniavsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8616)

Abstract

We present a framework for transforming FHE (fully homomorphic encryption) schemes with no circuit privacy requirements into maliciously circuit-private FHE. That is, even if both maliciously formed public key and ciphertext are used, encrypted outputs only reveal the evaluation of the circuit on some well-formed input x*. Previous literature on FHE only considered semi-honest circuit privacy. Circuit-private FHE schemes have direct applications to computing on encrypted data. In that setting, one party (a receiver) holding an input x wishes to learn the evaluation of a circuit C held by another party (a sender). The goal is to make receiver’s work sublinear (and ideally independent) of \(\left\lvert C \right\rvert \), using a 2-message protocol. The transformation technique may be of independent interest, and have various additional applications. The framework uses techniques akin to Gentry’s bootstrapping and conditional disclosure of secrets (CDS [AIR01]) combining a non circuit private FHE scheme, with a homomorphic encryption (HE) scheme for a smaller class of circuits which is maliciously circuit-private. We devise the first known circuit private FHE, by instantiating our framework by various (standard) FHE schemes from the literature.

Keywords

Fully homomorphic encryption computing on encrypted data privacy malicious setting 

References

  1. [AIR01]
    Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public key encryption that allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. [BKOI07]
    Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. [BLV04]
    Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. In: Electronic Colloquium on Computational Complexity (ECCC), vol. (83) (2004)Google Scholar
  4. [Bra12]
    Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. [BV11]
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. Cryptology ePrint Archive, Report 2011/344 (2011), http://eprint.iacr.org/2011/344
  6. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  7. [DFH12]
    Damgård, I., Faust, S., Hazay, C.: Secure Two-Party Computation with Low Communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. [DJ01]
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [Gen09]
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009), http://crypto.stanford.edu/craig
  10. [GHV10]
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. [GIKM98]
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Vitter, J.S. (ed.) STOC, pp. 151–160. ACM (1998)Google Scholar
  12. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [GSW13]
    Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. [HK12]
    Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptology 25(1), 158–193 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [IK02]
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials (2002)Google Scholar
  16. [IP07]
    Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007), Full version in, http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2012/PHD/PHD-2012-16CrossRefGoogle Scholar
  17. [Lip05]
    Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [NP01]
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao Kosaraju, S. (ed.) SODA, pp. 448–457. ACM/SIAM (2001)Google Scholar
  19. [vDGHV09]
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. Cryptology ePrint Archive, Report 2009/616 (2009), http://eprint.iacr.org/2009/616

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Rafail Ostrovsky
    • 1
  • Anat Paskin-Cherniavsky
    • 2
  • Beni Paskin-Cherniavsky
  1. 1.Department of Computer Science and MathematicsUCLAUSA
  2. 2.Department of Computer ScienceUCLAUSA

Personalised recommendations