Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Annual Cryptology Conference

CRYPTO 2014: Advances in Cryptology – CRYPTO 2014 pp 280–296Cite as

  1. Home
  2. Advances in Cryptology – CRYPTO 2014
  3. Conference paper
Revisiting the Gentry-Szydlo Algorithm

Revisiting the Gentry-Szydlo Algorithm

  • H. W. Lenstra17 &
  • A. Silverberg18 
  • Conference paper
  • 4026 Accesses

  • 8 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8616)

Abstract

We put the Gentry-Szydlo algorithm into a mathematical framework, and show that it is part of a general theory of “lattices with symmetry”. For large ranks, there is no good algorithm that decides whether a given lattice has an orthonormal basis. But when the lattice is given with enough symmetry, we can construct a provably deterministic polynomial time algorithm to accomplish this, based on the work of Gentry and Szydlo. The techniques involve algorithmic algebraic number theory, analytic number theory, commutative algebra, and lattice basis reduction. This sheds new light on the Gentry-Szydlo algorithm, and the ideas should be applicable to a range of questions in cryptography.

Keywords

  • lattices
  • Gentry-Szydlo algorithm
  • ideal lattices
  • lattice- based cryptography

Chapter PDF

Download to read the full chapter text

References

  1. Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading (1969)

    Google Scholar 

  2. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st ACM Symposium on Theory of Computing—STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  4. Gentry, C.: A fully homomorphic encryption scheme, Stanford University PhD thesis (2009), http://crypto.stanford.edu/craig/craig-thesis.pdf

  5. Gentry, C.: email (May 9, 2012)

    Google Scholar 

  6. Gentry, C., Szydlo, M.: Cryptanalysis of the Revised NTRU Signature Scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002), Full version at http://www.szydlo.com/ntru-revised-full02.pdf

    CrossRef  Google Scholar 

  7. Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64(3), 265–338 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Lang, S.: Algebra, Graduate Texts in Mathematics, 3rd edn., vol. 211. Springer-Verlag, New York (2002)

    Google Scholar 

  9. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Lenstra Jr., H.W.: Lattices, in Algorithmic number theory: lattices, number fields, curves and cryptography. In: Buhler, J.P., Stevenhagen, P. (eds.) Math. Sci. Res. Inst. Publ., vol. 44, pp. 127–181. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  11. Smart, N.: personal communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematisch Instituut, Universiteit Leiden, The Netherlands

    H. W. Lenstra

  2. Department of Mathematics, University of California, Irvine, Irvine, CA, USA

    A. Silverberg

Authors
  1. H. W. Lenstra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Silverberg
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Yahoo Labs, 701 Firstz Avenue, 94089, Sunnyvale, CA, USA

    Juan A. Garay

  2. The City College of New York, 160 Convent Avenue, 10031, New York, NY, USA

    Rosario Gennaro

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 International Association for Cryptologic Research

About this paper

Cite this paper

Lenstra, H.W., Silverberg, A. (2014). Revisiting the Gentry-Szydlo Algorithm. In: Garay, J.A., Gennaro, R. (eds) Advances in Cryptology – CRYPTO 2014. CRYPTO 2014. Lecture Notes in Computer Science, vol 8616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44371-2_16

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-44371-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44370-5

  • Online ISBN: 978-3-662-44371-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

18.206.13.203

Not affiliated

Springer Nature

© 2023 Springer Nature