Abstract
We put the Gentry-Szydlo algorithm into a mathematical framework, and show that it is part of a general theory of “lattices with symmetry”. For large ranks, there is no good algorithm that decides whether a given lattice has an orthonormal basis. But when the lattice is given with enough symmetry, we can construct a provably deterministic polynomial time algorithm to accomplish this, based on the work of Gentry and Szydlo. The techniques involve algorithmic algebraic number theory, analytic number theory, commutative algebra, and lattice basis reduction. This sheds new light on the Gentry-Szydlo algorithm, and the ideas should be applicable to a range of questions in cryptography.
Chapter PDF
Similar content being viewed by others
References
Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading (1969)
Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st ACM Symposium on Theory of Computing—STOC 2009, pp. 169–178. ACM, New York (2009)
Gentry, C.: A fully homomorphic encryption scheme, Stanford University PhD thesis (2009), http://crypto.stanford.edu/craig/craig-thesis.pdf
Gentry, C.: email (May 9, 2012)
Gentry, C., Szydlo, M.: Cryptanalysis of the Revised NTRU Signature Scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002), Full version at http://www.szydlo.com/ntru-revised-full02.pdf
Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64(3), 265–338 (1992)
Lang, S.: Algebra, Graduate Texts in Mathematics, 3rd edn., vol. 211. Springer-Verlag, New York (2002)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Lenstra Jr., H.W.: Lattices, in Algorithmic number theory: lattices, number fields, curves and cryptography. In: Buhler, J.P., Stevenhagen, P. (eds.) Math. Sci. Res. Inst. Publ., vol. 44, pp. 127–181. Cambridge University Press, Cambridge (2008)
Smart, N.: personal communication
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 International Association for Cryptologic Research
About this paper
Cite this paper
Lenstra, H.W., Silverberg, A. (2014). Revisiting the Gentry-Szydlo Algorithm. In: Garay, J.A., Gennaro, R. (eds) Advances in Cryptology – CRYPTO 2014. CRYPTO 2014. Lecture Notes in Computer Science, vol 8616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44371-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-44371-2_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44370-5
Online ISBN: 978-3-662-44371-2
eBook Packages: Computer ScienceComputer Science (R0)