Skip to main content

Introduction

  • Chapter
  • First Online:
  • 650 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Flying, higher and faster, has always been a dream of humans all over the world in all ages. In ancient legends and tales of China, Greece, and many other nations, the ability of free flight is the main feature to distinguish Gods from ordinary humans. Besides mythical carriers like auspicious clouds, broomsticks, magic carpet, there are also myths of flying men with feathered wings, such as Icarus in the ancient Greek poetry and Zhen-Zi Lei (means “Son of Thunder,” the little brother of the first King of Zhou Dynasty) in the classical Chinese novel The Investiture of the Gods. According to historical records, Hu Wan in the Ming Dynasty tried to fly with the pull of kites and the thrust of homemade black powder rockets. Leonardo da Vinci, the Renaissance giant of art and science, designed many human-powered fly machines. Although many such commendable attempts and explorations have gone down in history, all of these failed like blindly groping in the darkness, because the theoretical framework for the science of flight had not been established in those times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Von Karman Theodore (1954) Aerodynamics: selected topics in the light of their historical development. Cornell University Press, Ithaca

    MATH  Google Scholar 

  2. Tsien H-S (1948) Engineering and engineering sciences. J Chin Inst Eng 6:1–14

    Google Scholar 

  3. Tsien H-S (1957) The engineering sciences. Chin Sci Bull 4:97–104

    Google Scholar 

  4. Tong B-G, Yu Y-L, Bao L (2011) Engineering science research asking innovation of new theories for specific problems in engineering and technology. J Eng Stud 3:1–7

    Google Scholar 

  5. Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips. Nasa Technical Memorandum, 112204

    Google Scholar 

  6. Reuther J, Kinney D, Smith S, Kontinos D, Gage P, Saunders D (2001) A reusable space vehicle design study exploring sharp leading edges. AIAA Paper, 2001–2884

    Google Scholar 

  7. McClinton CR (2007) High speed/hypersonic aircraft propulsion technology development. Technical report, Von Karman Institut Rhode St. Genese, Belgium

    Google Scholar 

  8. Fay JA, Riddell FR (1958) Theory of stagnation point heat transfer in dissociated air. J Aeronaut Sci 25(2):73–85

    MathSciNet  Google Scholar 

  9. Glass DE (2008) Ceramic matrix composite (cmc) thermal protection systems (tps) and hot structures for hypersonic vehicles. AIAA Paper, 2008–2682

    Google Scholar 

  10. Walker SP, Sullivan BJ (2003) Sharp refractory composite leading edges on hypersonic vehicles. AIAA Paper, 2003–6915

    Google Scholar 

  11. Kontinos DA, Gee K, Prabhu DK (2001) Temperature constraints at the sharp leading edge of a crew transfer vehicle. AIAA Paper, 2001–2886

    Google Scholar 

  12. Kolodziej P, Bull JD, Milos FS (1997) Aerothermal performance constraints for small radius leading edges operating at hypervelocity. NASA Technical Report 19970040120:9

    Google Scholar 

  13. Wang W-L, Boyd Iain D (2003) Predicting continuum breakdown in hypersonic viscous flows. Phys Fluids 15(1):91–100

    Article  Google Scholar 

  14. Lofthouse AJ, Boyd ID, Wright MJ (2007) Effects of continuum breakdown on hypersonic aerothermodynamics. Phys Fluids 19:027105

    Article  Google Scholar 

  15. Santos WFN (2001) Direct simulation Monte Carlo of rarefied hypersonic flow on power law shaped leading edges. Ph.D. thesis, University of Maryland

    Google Scholar 

  16. Santos WFN, Lewis MJ (2003) Aerodynamic heating performance of power law leading edges in rarefied hypersonic flow. AIAA Paper, 2003–3894

    Google Scholar 

  17. Santos WFN (2004) Aerothermodynamic characteristics of flat-nose power-law bodies in low-density hypersonic flow. AIAA Paper, 2004–5381

    Google Scholar 

  18. Boyd ID, Padilla JF (2003) Simulation of sharp leading edge aerothermodynamics. AIAA Paper, 2003–7062

    Google Scholar 

  19. Bertin JJ, Cummings RM (2006) Critical hypersonic aerothermodynamic phenomena. Annu Rev Fluid Mech 38:129–157

    Google Scholar 

  20. Muntz EP (1989) Rarefied gas dynamics. Annu Rev Fluid Mech 21:387–417

    Article  MathSciNet  Google Scholar 

  21. Stalker RJ (1989) Hypervelocity aerodynamics with chemical non-equilibrium. Ann Rev Fluid Mech 21:37–60

    Article  Google Scholar 

  22. Ivanov MS, Gimelshein SF (1998) Computational hypersonic rarefied flows. Annu Rev Fluid Mech 30:469–505

    Article  MathSciNet  Google Scholar 

  23. Bush WB (1964) On the viscous hypersonic blunt-body problem. Ph.d, California Institute of Technology

    Google Scholar 

  24. Kao HC (1964) Hypersonic viscous flow near the stagnation streamline of a blunt body: II. third-order boundary-layer theory and comparison with other methods. AIAA J 2(11):1898–1906

    Google Scholar 

  25. Tong H, Gledtf WH (1964) Supersonic stagnation point heat transfer at low Reynolds numbers. AIAA Paper, 2271–929

    Google Scholar 

  26. Waldron HF (1967) Viscous hypersonic flow over pointed cones at low Reynolds numbers. AIAA J 5(2):208–218

    Google Scholar 

  27. Mikhailov VV, Neiland VY, Sychev VV (1971) The theory of viscous hypersonic flow. Annu Rev Fluid Mech 3:371–396

    Article  Google Scholar 

  28. Cheng HK (1993) Perspectives on hypersonic viscous flow research. Annu Rev Fluid Mech 25:455–484

    Article  Google Scholar 

  29. Tirskiy GA (1998) General gas dynamic model for the problems of hypersonic flow past blunt nosed bodies over the whole range of Reynolds numbers. In: Proceedings of the third European symposium on aerothermodynamics for space vehicles, pp 187–135

    Google Scholar 

  30. Brykyna IG (2004) Asymptotic solution of the thin viscous shock layer equations at low Reynolds numbers for a cold surface. Fluid Dynam 39(5):815–826

    Google Scholar 

  31. Brykina IG (2005) Asymptotic investigation of the thin viscous shock layer equations in the neighborhood of the stagnation point for low Reynolds numbers. Fluid Dyn 40(6):965–972

    Google Scholar 

  32. Brykina IG, Rogov BV, Tirskiy GA (2006) Continuum models of rarefied gas flows in problems of hypersonic aerothermodynamics. J Appl Math Mech 70(6):888–911

    Article  MathSciNet  Google Scholar 

  33. Engel CD, Praharaj SC (1983) Minnver upgrade for the AVID system (vol 1: Lanmin user’s manual). NASA Contractor Report 172212:126

    Google Scholar 

  34. Lutz SA (2003) Heating correlations for bluff cylinder hypersonic rarefied flows. AIAA Paper, 2003–4060

    Google Scholar 

  35. Lips T, Fritsche B (2005) Acomparison of commonly used re-entry analysis tools. Acta Astronaut 2005(57):12

    Google Scholar 

  36. Liaw GS, Guo KL, Chou LC (1993) Burnett solutions along the stagnation line of a cooled cylinder in low-density hypersonic flows. AIAA Paper, 1993–2726

    Google Scholar 

  37. Zhong X (1993) On numerical solutions of Burnett equations for hypersonic flow past 2-d circular blunt leading edges in continuum transition regime. AIAA Paper, 1993–3092

    Google Scholar 

  38. Zhong X, Furumoto G (1994) Solutions of the Burnett equations for axisymmetric hypersonic flow past spherical blunt bodies. AIAA Paper, 1994–1959

    Google Scholar 

  39. García-Colín LS, Velasco RM, Uribe FJ (2008) Beyond the Navier Stokes equations: Burnett hydrodynamics. Phys Rep 465:149–189

    Google Scholar 

  40. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  41. Shen C (2005) Rarefied gas dynamics: fundamentals simulations and micro flows. Springer, Berlin

    Book  Google Scholar 

  42. Lockerby Duncan A, Reese Jason M, Struchtrup Henning (2009) Switching criteria for hybrid rarefied gas flow solvers. Proc R Soc A 465:1581–1598

    Article  MATH  MathSciNet  Google Scholar 

  43. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford

    Google Scholar 

  44. Bird GA (1970) Direct simulation of the Boltzmann equation. Phys Fluids 13:2676–2681

    Google Scholar 

  45. Wagner Wolfgang (1992) A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J Stat Phys 66(3–4):1011–1044

    Google Scholar 

  46. Oran ES, Oh CK, Cybyk BZ (1998) Direct simulation Monte Carlo: recent advances and applications. Annu Rev Fluid Mech 1998(30):403441

    Google Scholar 

  47. Aktas O, Aluru NR (2002) A combined continuum/DSMC technique for multiscale analysis of microfluidic filters. J Comput Phys 178(2):342–372

    Google Scholar 

  48. Wijesinghe HS (2003) Hybrid atomistic-continuum formulations for gaseous flows. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  49. Wang W-L (2004) A hybrid particle/continuum approach for non-equilibrium hypersonic flows. Ph.d, The University of Michigan

    Google Scholar 

  50. Wijesinghe HS, Hornung RD, Garcia AL, Hadjiconstantinou NG (2004) Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics. J Fluids Eng 126(5):768–777

    Article  Google Scholar 

  51. Parks ML, Bochev PB, Lehoucq RB (2007) Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model Sim 7(1):362–380

    Article  MathSciNet  Google Scholar 

  52. Schwartzentruber TE, Scalabrin LC, Boyd ID (2007) A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows. J Comput Phys 225(2007):16

    MathSciNet  Google Scholar 

  53. Burt JM, Boyd ID (2009) A hybrid particle approach for continuum and rarefied flow simulation. J Comput Phys 228:460–475

    Article  MATH  Google Scholar 

  54. Li Z-H, Zhang H-X (2004) Gas kinetic algorithm using Boltzmann model equation. Comput Fluids 33:967–991

    Google Scholar 

  55. Li Z-H, Zhang H-X (2004) Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. J Comput Phys 193(2):708–738

    Article  MATH  Google Scholar 

  56. Kolobov VI, Arslanbekov RR, Aristov VV, Frolova AA, Zabelok SA, Tcheremissine FG (2006) Unified solver for rarefied and continuum flows in multi-component gas mixtures. In: 25th international symposium on rarefied gas dynamics, pp 388–395

    Google Scholar 

  57. Macrossan MN (1995) Some developments of the equilibrum paraticle simulation method for the direct simulation of compressible flows. NASA CR, 198175

    Google Scholar 

  58. Macrossan MN (2001) A particle-only hybrid method for near-continuum flows. In: 22nd international symposium on rarefied gas dynamics, pp 388–395

    Google Scholar 

  59. Nomura Shigeaki (1982) Correlation of hypersonic stagnation point heat transfer at low Reynolds numbers. AIAA J 21(11):1598–1600

    Google Scholar 

  60. Macrossan MN (2006) Scaling parameters for hypersonic flow: Correlation of sphere drag data. In: Rarefied gas dynamics: 25th international symposium, pp 759–764

    Google Scholar 

  61. Krasnov NF (1970) Aerodynamics of Bodies of Revolution. American Elsevier Publishing Company Inc, New York

    Google Scholar 

  62. Lighthill MJ (1957) Dynamics of a dissociating gas. part 1: equilibrium flow. J Fluid Mech 2(01):1–32

    Article  MathSciNet  Google Scholar 

  63. Lighthill MJ (1960) Dynamics of a dissociating gas. part 2: quasi-equilibrium transfer theory. J Fluid Mech 8(02):161–182

    Article  MATH  MathSciNet  Google Scholar 

  64. Freeman NC (1958) Non-equilibrium flow of an ideal dissociating gas. J Fluid Mech 4(04):407–425

    Article  MathSciNet  Google Scholar 

  65. Hornung HG (1972) Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. J Fluid Mech 53(1):149–176

    Article  MATH  Google Scholar 

  66. Hornung HG (1976) Non-equilibrium ideal-gas dissociation after a curved shock wave. J Fluid Mech 74(01):143–159

    Article  MATH  Google Scholar 

  67. Hornung HG, Smith GH (1979) The influence of relaxation on shock detachment. J Fluid Mech 93(02):225–239

    Article  Google Scholar 

  68. Wen CY, Hornung HG (1995) Nonequilibrium dissociating flow over spheres. J Fluid Mech 299(1):389–405

    Article  MATH  Google Scholar 

  69. Conti Raul (1966) A theoretical study of non-equilibrium blunt-body flows. J Fluid Mech 24(1):65–88

    Article  MathSciNet  Google Scholar 

  70. Conti R, Van Dyke M (1969) Reacting flow as an example of a boundary layer under singular external conditions. J Fluid Mech 38(3):513–535

    Article  MATH  Google Scholar 

  71. Conti R, Van Dyke M (1969) Inviscid reacting flow near a stagnation point. J Fluid Mech 35(4):799–813

    Article  MATH  Google Scholar 

  72. Olivier H (2000) A theoretical model for the shock stand-off distance in frozen and equilibrium flows. J Fluid Mech 413(1):345–353

    Article  MATH  MathSciNet  Google Scholar 

  73. Belouaggadia N, Olivier H, Brun R (2008) Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. J Fluid Mech 607:167–197

    Article  MATH  MathSciNet  Google Scholar 

  74. Wen C, Hornung H (2010) Non-equilibrium recombination after a curved shock wave. Prog Aerosp Sci 46:132–139

    Article  Google Scholar 

  75. Anderson JD (2006) Hypersonic and high temperature gas dynamics, 2nd edn. AIAA Inc, Reston

    Book  Google Scholar 

  76. Inger GR (1963) Non-equilibrium stagnation point boundary layers with arbitrary surface catalycit. AIAA J 1:1776–1784

    Article  MATH  Google Scholar 

  77. Inger GR (1963) Non-equilibrium dissociated boundary layers with a reacting inviscid flow. AIAA J 1:2057–2061

    Article  MATH  Google Scholar 

  78. Inger GR (1966) Non-equilibrium hypersonic stagnation flow with arbitrary surface catalycity including low Reynolds number effects. Int J Heat Mass Tran 9:755–772

    Google Scholar 

  79. Inger GR (1966) Nearly equilibrium dissociating boundary-layer flows by the method of matched asymptotic expansions. J Fluid Mech 26:793–806

    Article  MATH  MathSciNet  Google Scholar 

  80. Blottner FG (1969) Viscous shock layer at the stagnation point with non-equilibrium air chemistry. AIAA J 7:2281–2288

    Article  Google Scholar 

  81. Dunn MG, Kang S-W (1973) Heoretical and experimental studies of reentry plasmas. NASA CR, 2232

    Google Scholar 

  82. Birkhoff G (1960) Hydrodynamics: a study in logic fact and similitude, 2nd edn. Princeton University Press, Princeton

    MATH  Google Scholar 

  83. Zhang Han-Xin (1990) The similarity law for real gas flow. Acta Aerodyn Sin 8:1–8

    Google Scholar 

  84. Chung PM (1961) Hypersonic viscous shock layer of non-equilibrium dissociating gas. NASA TR, R-109

    Google Scholar 

  85. Cheng HK (1963) The blunt-body problem in hypersonic flow at low Reynolds number. Technical report, Cornell Aeronautical Laboratory

    Google Scholar 

  86. Rosner DE (1963) Scale effects and correlations in non-equilibrium convective heat transfer. AIAA J 1:1550–1555

    Article  Google Scholar 

  87. Voronkin VG (1971) Non-equilibrium viscous flow of a multicomponent gas in the vicinity of the stagnation point of a blunt body. Fluid Dyn 6(2):308–311

    Article  Google Scholar 

  88. Serpico M, Monti R, Savino R (1998) Heat flux on partially catalytic surfaces in hypersonic flows. J Spacecraft Rockets 35:9–15

    Article  Google Scholar 

  89. Gokcen Tahir (1996) Effects of freestream non-equilibrium on convective heat transfer to a blunt body. J Thermophys Heat Tr 10(2):234–241

    Article  Google Scholar 

  90. Gokcen Tahir (1997) Effects of flowfield non-equilibrium on convective heat transfer to a blunt body. J Thermophys Heat Tr 11(2):289–295

    Article  Google Scholar 

  91. Inger George R (1995) Non-equilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles. J Thermophys Heat Tr 9(4):595–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, ZH. (2015). Introduction. In: Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and Nonequilibrium Real Gas Effects. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44365-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44365-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44364-4

  • Online ISBN: 978-3-662-44365-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics