Group IV Nanowires

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 190)

Abstract

X-ray absorption fine structure spectroscopy and related techniques such as X-ray emission spectroscopy and X-ray Excited Optical luminescence play a significant role in understanding the electronic structures of group IV semiconductor nanowires. This chapter reviews how these techniques have been recently used to reveal the unique properties of group IV semiconductor nanowires, especially silicon and germanium, and their oxides. Other group IV nanowires, such as carbon and tin nanowires are also noted.

References

  1. 1.
    A.M. Morales, C.M. Lieber, Science 279, 208 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 75, 2921 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    B.K. Teo, X.H. Sun, Chem. Rev. 107, 1454 (2007)CrossRefGoogle Scholar
  6. 6.
    D.W. Wang, Pure Appl. Chem. 79, 55 (2007)Google Scholar
  7. 7.
    B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia, M. Meyyappan, J. Cluster Sci. 17, 579 (2006)CrossRefGoogle Scholar
  8. 8.
    T.K. Sham, Int. J. Nanotech. 5, 1194 (2008)Google Scholar
  9. 9.
    J. Stohr, NEXAFS Spectroscopy (Springer, Berlin, 1992)Google Scholar
  10. 10.
    Y. Ma, N. Wassdahl, J. Guo, J. Nordgren, P.D. Johnson, J.-E. Rubensson, T. Boske, W. Eberthardt, S.D. Kevan, Phys. Rev. Lett. 66, 2598 (1992)Google Scholar
  11. 11.
    E.J. Nordgren, S.M. Butorin, L.C. Duda, J.H. Guo, J. Rubensson, Soft X-ray fluorescence spectroscopy for materials science and chemical physics, in Chemical Applications of Synchrotron Radiation Part I, ed. by T.K. Sham (World Scientific, Singapore, 2002)Google Scholar
  12. 12.
    J.-E. Rubensson, D. Mueller, R. Shuker, D.L. Ederer, C.H. Zhang, J. Jia, T.A. Callcott. Phys. Rev. Lett. 64, 1047 (1990)Google Scholar
  13. 13.
    F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008)Google Scholar
  14. 14.
    T.K. Sham, D.-T. Jiang, I. Coulthard, J.W. Lorimer, S.P. Frigo, X.H. Feng, K.H. Tan, D.C. Houghton, B. Bryskiewicz, R.A. Rosenberg, Nature 363, 331 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    D.T. Jiang, I. Coulthard, T.K. Sham, J.W. Lorimer, S.P. Frigo, X.H. Feng, R.A. Rosenberg, J. Appl. Phys. 74, 6335 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    T.K. Sham, R.A. Rosenberg, ChemPhysChem 8, 2557 (2007)CrossRefGoogle Scholar
  17. 17.
    T.K. Sham, S.J. Naftel, P.-S.G. Kim, R. Sammynaiken, Y.H. Tang, I. Coulthard, A. Moewes, J.W. Freeland, Y.-F. Hu, S.T. Lee, Phys. Rev. B 70, 045313 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    X.H. Sun, C. Didychuk, T.K. Sham, N.B. Wong, Nanotechnology 17, 2925 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    F. Heigl, A. Jurgensen, X.-T. Zhou, M. Murphy, J.Y.P. Ko, T.K. Sham, R. Rosenberg, R. Gordon, D. Brewe, T. Regier, L. Armelao, in AIP Proceedings, 9th International Conference on Synchrotron Radiation Instrumentation (AIP CP879, 2007), p. 1202Google Scholar
  20. 20.
    J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995)Google Scholar
  21. 21.
    F. Vogtle, Supramolecular Chemistry: An Introduction (Wiley, Chichester, 1991)Google Scholar
  22. 22.
    D.B. Amabilino, J.F. Stoddart, Chem. Rev. 95, 2725 (1995)Google Scholar
  23. 23.
    G. Ungar, Y.S. Liu, X.B. Zeng, V. Percec, W.D. Cho. Science 299, 1208 (2003)Google Scholar
  24. 24.
    I. Amato, Science 282, 402 (1998)Google Scholar
  25. 25.
    J.W. Judy, Smart Mater. Struct. 10, 1115 (2001)Google Scholar
  26. 26.
    H. Heinrich, G. Bauer, F.E. Kuchar, Physics and Technology of Submicron Structures (Springer, Berlin, 1988)Google Scholar
  27. 27.
    R.F. Service. Science 293, 785 (2001)Google Scholar
  28. 28.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    R.Q. Zhang, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, 635 (2003)CrossRefGoogle Scholar
  31. 31.
    R. Juhasz, N. Elfstrom, J. Linnros, Nano Lett. 5, 275 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    C.M. Hsu, S.T. Connor, M.X. Tang, Y. Cui, Appl. Phys. Lett. 93, 133109 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    E. Garnett, P.D. Yang, Nano Letters 10, 1082 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Mater. 14, 1164 (2002)CrossRefGoogle Scholar
  35. 35.
    K.Q. Peng, Y. Wu, H. Fang, X.Y. Zhong, Y. Xu, J. Zhu, Angew. Chem. Int. Ed. 44, 2737 (2005)CrossRefGoogle Scholar
  36. 36.
    K.Q. Peng, A.J. Lu, R.Q. Zhang, S.T. Lee, Adv. Funct. Mater. 18, 3026 (2008)CrossRefGoogle Scholar
  37. 37.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  38. 38.
    Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    Y.Y. Wu, P.D. Yang, Chem. Mater. 12, 605 (2000)CrossRefGoogle Scholar
  40. 40.
    P. Nguyen, H.T. Ng, M. Meyyappan, Adv. Mater. 17, 549 (2005)CrossRefGoogle Scholar
  41. 41.
    D.W. Wang, H.J. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)CrossRefGoogle Scholar
  42. 42.
    S. Mathur, H. Shen, V. Sivakov, U. Werner, Chem. Mater. 16, 2449 (2004)CrossRefGoogle Scholar
  43. 43.
    B.A. Korgel, T. Hanrath, Adv. Mater. 15, 437 (2003)CrossRefGoogle Scholar
  44. 44.
    X.H. Sun, G. Calebotta, B. Yu, M. Meyyappan, J. Vac. Sci. Technol. B 25, 415 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Bunker, Introduction to XAFS (Cambridge University Press, Cambridge, 2012)Google Scholar
  46. 46.
    X-ray calculator, http://www-cxro.lbl.gov/
  47. 47.
    A.J. Achkar, T.Z. Regier, H. Wadati, Y.-J. Kim, H. Zhang, D.G. Hawthorn, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 081106(R) (2011)ADSCrossRefGoogle Scholar
  48. 48.
    X.H. Sun, S. Lam, T.K. Sham, F. Heigl, A. Jürgensen, N.B. Wong, J. Phys. Chem. B 109, 3120 (2005)Google Scholar
  49. 49.
    F. Heigl, S. Lam, T. Regier, I. Coulthard, T.K. Sham, J. Am. Chem. Soc. 128, 3906 (2006)CrossRefGoogle Scholar
  50. 50.
    R.A. Rosenberg, G.K. Shenoy, L.C. Tien, D. Norton, S. Pearson, X.H. Sun, T.K. Sham, Appl. Phys. Lett. 89, 093118 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    X.T. Zhou, F. Heigl, J.Y.P. Ko, M.W. Murphy, J.G. Zhou, T. Regier, R. Blyth, T.K. Sham, Phys. Rev. B 75, 125303 (2007)Google Scholar
  52. 52.
    R.A. Rosenberg, G.K. Shenoy, P.-S.G. Kim, T.K. Sham, J. Phys. Chem. 112, 13943 (2008)Google Scholar
  53. 53.
    L.J. Liu, T.K. Sham, Small 8, 2371 (2012)CrossRefGoogle Scholar
  54. 54.
    K.Q. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)CrossRefGoogle Scholar
  55. 55.
    M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong, J. Phys. Chem. C 112, 4444 (2008)CrossRefGoogle Scholar
  56. 56.
    Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Nano Letters 9, 4539 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    L. Lin, S. Guo, X. Sun, J. Feng, Y. Wang, Nanoscale Res. Lett. 5, 1822 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    M.J. Ward, J.G. Smith, T.Z. Regier, W.Q. Han, T K. Sham, SRI 2012 IOP Proc (2012) (accepted)Google Scholar
  59. 59.
    X.H. Sun, N.B. Wong, C.P. Li, S.T. Lee, T.K. Sham, J. Appl. Phys. 96, 3447 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    R.A. Rosenberg, G.K. Shenoy, X.H. Sun, T.K. Sham, Appl. Phys. Lett. 89, 243102 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    X.H. Sun, T.K. Sham, R.A. Rosenberg, G.K. Shenoy, J. Phys. Chem. C 111, 8475 (2007)CrossRefGoogle Scholar
  62. 62.
    C.Y. Yan, M.Y. Chan, Z. Zhang, P.S. Lee, J. Phys. Chem. C 113, 1705 (2009)CrossRefGoogle Scholar
  63. 63.
    Z.Y. Lin, B.K. Garside, Appl. Opt. 21, 4324 (1982)ADSCrossRefGoogle Scholar
  64. 64.
    Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Cai, Q.L. Hang, C.C. Xiong, S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    M.F. Peng, Y. Li, J. Gao, D. Zhang, Z. Jiang, X.H. Sun, J. Phys. Chem. C 115, 11420 (2011)CrossRefGoogle Scholar
  66. 66.
    P. Hidalgo, E. Liberti, Y. Rodríguez-Lazcano, B. Méndez, J. Piqueras, J. Phys. Chem. C113, 17200 (2009)Google Scholar
  67. 67.
    M. Zacharias, P.M. Fauchet, J. Non-Cryst. Solids 227, 1058 (1998)Google Scholar
  68. 68.
    X.C. Wu, W.H. Song, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 349, 210 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    A.S. Zyubin, A.M. Mebel, S.H. Lin, J. Phys. Chem. A 111, 9479 (2007)CrossRefGoogle Scholar
  70. 70.
    L. Armelao, F. Heigl, P.-S.G. Kim, R.A. Rosenberg, T. Regier, T.K. Sham, J. Phys. Chem. C 116, 14163 (2012)CrossRefGoogle Scholar
  71. 71.
    Y.H. Tang, P. Zhang, Y.F. Hu, X.H. Sun, M.K. Fung, Y.F. Zheng, C.S. Lee, S.T. Lee, T.K. Sham, Appl. Phys. Lett. 79, 3773 (2001)ADSCrossRefGoogle Scholar
  72. 72.
    X.T. Zhou, F. Heigl, T. Regier, I. Coulthard, T.K. Sham, Appl. Phys. Lett. 89, 213109 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    D. Wang, J. Yang, X. Li, R. Li, T.K. Sham, X.-L. Sun, Cryst. Growth Des. 12, 397 (2012)CrossRefGoogle Scholar
  74. 74.
    M.J. Ward, J.G. Smith, T.Z. Regier, T.K. Sham, SRI2012 Proc. J. Phys. Conf. Ser. 425, 132009 (2013)Google Scholar
  75. 75.
    M.J. Ward, T.Z. Regier, J.M. Vogt, R.A. Gordon, W.-Q. Han, T.K. Sham, SRI 2012 Proc. J. Phys. Conf. Ser. 425, 092006 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Chemistry, Soochow University-Western University Joint Centre for Synchrotron Radiation ResearchUniversity of Western OntarioLondonCanada

Personalised recommendations