Abels H. The Gallery Distance of Flags, Order, Vol. 8, pp. 77–92, 1991.
MathSciNet
MATH
Google Scholar
Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non–crossing Spanning Trees, Proc. 16–th European Workshop on Computational Geometry CG’2000, pp. 121–125, 2000.
Google Scholar
Aichholzer O., Aurenhammer F., Chen D.Z., Lee D.T., Mukhopadhyay A. and Papadopoulou E. Voronoi Diagrams for Direction–sensitive Distances, Proc. 13th Symposium on Computational Geometry, ACM Press, New York, 1997.
Google Scholar
Akerlof G.A. Social Distance and Social Decisions, Econometrica, Vol. 65–5, pp. 1005–1027, 1997.
MathSciNet
Google Scholar
Amari S. Differential–geometrical Methods in Statistics, Lecture Notes in Statistics, Springer–Verlag, 1985.
MATH
Google Scholar
Ambartzumian R. A Note on Pseudo–metrics on the Plane, Z. Wahrsch. Verw. Gebiete, Vol. 37, pp. 145–155, 1976.
MathSciNet
MATH
Google Scholar
Arnold R. and Wellerding A. On the Sobolev Distance of Convex Bodies, Aeq. Math., Vol. 44, pp. 72–83, 1992.
MathSciNet
MATH
Google Scholar
Baddeley A.J. Errors in Binary Images and an L
p
Version of the Hausdorff Metric, Nieuw Archief voor Wiskunde, Vol. 10, pp. 157–183, 1992.
MathSciNet
MATH
Google Scholar
Baier R. and Farkhi E. Regularity and Integration of Set–Valued Maps Represented by Generalized Steiner Points Set–Valued Analysis, Vol. 15, pp. 185–207, 2007.
MathSciNet
MATH
Google Scholar
Barabási A.L. The Physics of the Web, Physics World, July 2001.
Google Scholar
Barbaresco F. Information Geometry of Covariance Matrix: Cartan–Siegel Homogenous Bounded Domains, Mostow–Berger Fibration and Fréchet Median, in Matrix Information Geometry, Bhatia R. and Nielsen F. (eds.) Springer, 2012.
Google Scholar
Barbilian D. Einordnung von Lobayschewskys Massenbestimmung in either Gewissen Allgemeinen Metrik der Jordansche Bereiche, Casopis Mathematiky a Fysiky, Vol. 64, pp. 182–183, 1935.
MATH
Google Scholar
Barceló C., Liberati S. and Visser M. Analogue Gravity, Living Rev. Rel. Vol. 8, 2005; arXiv: gr–qc/0505065, 2005.
Google Scholar
Bartal Y., Linial N., Mendel M. and Naor A. Some Low Distortion Metric Ramsey Problems, Discrete and Computational Geometry, Vol. 33, pp. 27–41, 2005.
MathSciNet
MATH
Google Scholar
Basseville M. Distances measures for signal processing and pattern recognition, Signal Processing, Vol. 18, pp. 349–369, 1989.
MathSciNet
Google Scholar
Basseville M. Distances measures for statistical data processing – An annotated bibliography, Signal Processing, Vol. 93, pp. 621–633, 2013.
Google Scholar
Batagelj V. Norms and Distances over Finite Groups, J. of Combinatorics, Information and System Sci., Vol. 20, pp. 243–252, 1995.
Google Scholar
Beer G. On Metric Boundedness Structures, Set–Valued Analysis, Vol. 7, pp. 195–208, 1999.
MathSciNet
MATH
Google Scholar
Bennet C.H., Gács P., Li M., Vitánai P.M.B. and Zurek W. Information Distance, IEEE Transactions on Information Theory, Vol. 44–4, pp. 1407–1423, 1998.
Google Scholar
Berrou C., Glavieux A. and Thitimajshima P. Near Shannon Limit Error–correcting Coding and Decoding: Turbo–codes, Proc. of IEEE Int. Conf. on Communication, pp. 1064–1070, 1993.
Google Scholar
Blanchard F., Formenti E. and Kurka P. Cellular Automata in the Cantor, Besicovitch and Weyl Topological Spaces, Complex Systems, Vol. 11, pp. 107–123, 1999.
MathSciNet
Google Scholar
Bloch I. On fuzzy distances and their use in image processing under unprecision, Pattern Recognition, Vol. 32, pp. 1873–1895, 1999.
Google Scholar
Block H.W., Chhetry D., Fang Z. and Sampson A.R. Metrics on Permutations Useful for Positive Dependence, J. of Statistical Planning and Inference, Vol. 62, pp. 219–234, 1997.
MathSciNet
MATH
Google Scholar
Blumenthal L.M. Theory and Applications of Distance Geometry, Chelsea Publ., New York, 1970.
MATH
Google Scholar
Borgefors G. Distance Transformations in Digital Images, Comp. Vision, Graphic and Image Processing, Vol. 34, pp. 344–371, 1986.
Google Scholar
Bramble D.M. and Lieberman D.E. Endurance Running and the Evolution of Homo, Nature, Vol. 432, pp. 345–352, 2004.
Google Scholar
O’Brien C. Minimization via the Subway metric, Honor Thesis, Dept. of Math., Ithaca College, New York, 2003.
Google Scholar
Broder A.Z., Kumar S. R., Maaghoul F., Raghavan P., Rajagopalan S., Stata R., Tomkins A. and Wiener G. Graph Structure in the Web: Experiments and Models, Proc. 9–th WWW Conf., Amsterdam, 2000.
Google Scholar
Brualdi R.A., Graves J.S. and Lawrence K.M. Codes with a Poset Metric, Discrete Math., Vol. 147, pp. 57–72, 1995.
MathSciNet
MATH
Google Scholar
Bryant V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, 1985.
MATH
Google Scholar
Buckley F. and Harary F. Distance in Graphs, Redwood City, CA: Addison–Wesley, 1990.
MATH
Google Scholar
Bullough E. “Psychical Distance” as a Factor in Art and as an Aesthetic Principle, British J. of Psychology, Vol. 5, pp. 87–117, 1912.
Google Scholar
Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Amer. Math. Soc., Graduate Studies in Math., Vol. 33, 2001.
Google Scholar
Busemann H. and Kelly P.J. Projective Geometry and Projective Metrics, Academic Press, New York, 1953.
MATH
Google Scholar
Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955.
MATH
Google Scholar
Busemann H. and Phadke B.B. Spaces with Distinguished Geodesics, Marcel Dekker, New York, 1987.
MATH
Google Scholar
Cairncross F. The Death of Distance 2.0: How the Communication Revolution will Change our Lives, Harvard Business School Press, second edition, 2001.
Google Scholar
Calude C.S., Salomaa K. and Yu S. Metric Lexical Analysis, Springer–Verlag, 2001.
Google Scholar
Cameron P.J. and Tarzi S. Limits of cubes, Topology and its Appl., Vol. 155, pp. 1454–1461, 2008.
MathSciNet
MATH
Google Scholar
Carmi S., Havlin S., Kirkpatrick S., Shavitt Y. and Shir E. A model of internet topology using k–shell decomposition, Proc. Nat. Acad. Sci., Vol. 104, pp. 11150–11154, 2007.
Google Scholar
Cha S.–H. Taxonomy of nominal type histogram distance measures, Proc. American Conf. on Appl, Math., World Scientific and Engineering Academy and Society (WREAS) Stevens Point, Wisconsin, US, pp. 325–330, 2008.
Google Scholar
Cheng Y.C. and Lu S.Y. Waveform Correlation by Tree Matching, IEEE Trans. Pattern Anal. Machine Intell., Vol. 7, pp. 299–305, 1985.
Google Scholar
Chentsov N.N. Statistical Decision Rules and Optimal Inferences, Nauka, Moscow, 1972.
Google Scholar
Chepoi V. and Fichet B. A Note on Circular Decomposable Metrics, Geom. Dedicata, Vol. 69, pp. 237–240, 1998.
MathSciNet
MATH
Google Scholar
Choi S.W. and Seidel H.–P. Hyperbolic Hausdorff Distance for Medial Axis Transform, Research Report MPI–I–2000–4–003 of Max–Planck–Institute für Informatik, 2000.
Google Scholar
Coifman R.R., Lafon S., A.B., Maggioni M., Nadler B., Warner F., Zucker S.W. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of the National Academy of Sciences, Vol. 102, No. 21, pp. 7426–7431, 2005.
Google Scholar
Collado M.D., Ortuno–Ortin I. and Romeu A. Vertical Transmission of Consumption Behavior and the Distribution of Surnames, mimeo, Universidad de Alicante, 2005.
Google Scholar
Copson E.T. Metric Spaces, Cambridge Univ. Press, 1968.
MATH
Google Scholar
Corazza P. Introduction to metric–preserving functions, Amer. Math. Monthly, Vo. 104, pp. 309–323, 1999.
Google Scholar
Cormode G. Sequence Distance Embedding, PhD Thesis, Univ. of Warwick, 2003.
Google Scholar
Critchlow D.E., Pearl D.K. and Qian C. The Triples Distance for Rooted Bifurcating Phylogenetic Trees, Syst. Biology, Vol. 45, pp. 323–334, 1996.
Google Scholar
Croft W. B., Cronon–Townsend S. and Lavrenko V. Relevance Feedback and Personalization: A Language Modeling Perspective, in DELOS–NSF Workshop on Personalization and Recommender Systems in Digital Libraries, pp. 49–54, 2001.
Google Scholar
Cuijpers R.H., Kappers A.M.L and Koenderink J.J. The metrics of visual and haptic space based on parallelity judgements, J. Math. Psychology, Vol. 47, pp. 278–291, 2003.
MathSciNet
MATH
Google Scholar
Das P.P. and Chatterji B.N. Knight’s Distance in Digital Geometry, Pattern Recognition Letters, Vol. 7, pp. 215–226, 1988.
MATH
Google Scholar
Das P.P. Lattice of Octagonal Distances in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 663–667, 1990.
MATH
Google Scholar
Das P.P. and Mukherjee J. Metricity of Super–knight’s Distance in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 601–604, 1990.
MATH
Google Scholar
Dauphas N. The U/Th Production Ratio and the Age of the Milky Way from Meteorites and Galactic Halo Stars, Nature, Vol. 435, pp. 1203–1205, 2005.
Google Scholar
Day W.H.E. The Complexity of Computing Metric Distances between Partitions, Math. Social Sci., Vol. 1, pp. 269–287, 1981.
MATH
Google Scholar
Deza M.M. and Dutour M. Voronoi Polytopes for Polyhedral Norms on Lattices, arXiv:1401.0040 [math.MG], 2013.
Google Scholar
Deza M.M. and Dutour M. Cones of Metrics, Hemi–metrics and Super–metrics, Ann. of European Academy of Sci., pp. 141–162, 2003.
Google Scholar
Deza M. and Huang T. Metrics on Permutations, a Survey, J. of Combinatorics, Information and System Sci., Vol. 23, Nrs. 1–4, pp. 173–185, 1998.
Google Scholar
Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer, 1997.
Google Scholar
Deza M.M., Petitjean M. and Matkov K. (eds) Mathematics of Distances and Applications, ITHEA, Sofia, 2012.
Google Scholar
Ding L. and Gao S. Graev metric groups and Polishable subgroups, Advances in Mathematics, Vol. 213, pp. 887–901, 2007.
MathSciNet
MATH
Google Scholar
Ehrenfeucht A. and Haussler D. A New Distance Metric on Strings Computable in Linear Time, Discrete Appl. Math., Vol. 20, pp. 191–203, 1988.
MathSciNet
MATH
Google Scholar
Encyclopedia of Math., Hazewinkel M. (ed.), Kluwer Academic Publ., 1998. Online edition: http://eom.springer.de/default.htm
Ernvall S. On the Modular Distance, IEEE Trans. Inf. Theory, Vol. 31–4, pp. 521–522, 1985.
MathSciNet
Google Scholar
Estabrook G.F., McMorris F.R. and Meacham C.A. Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Syst. Zool, Vol. 34, pp. 193–200, 1985.
Google Scholar
Farrán J.N. and Munuera C. Goppa–like Bounds for the Generalized Feng–Rao Distances, Discrete Appl. Math., Vol. 128, pp. 145–156, 2003.
MathSciNet
MATH
Google Scholar
Fazekas A. Lattice of Distances Based on 3D–neighborhood Sequences, Acta Math. Academiae Paedagogicae Nyiregyháziensis, Vol. 15, pp. 55–60, 1999.
MathSciNet
MATH
Google Scholar
Feng J. and Wang T.M. Characterization of protein primary sequences based on partial ordering, J. Theor. Biology, Vol. 254, pp. 752–755, 2008.
Google Scholar
Fellous J–M. Gender Discrimination and Prediction on the Basis of Facial Metric Information, Vision Research, Vol. 37, pp. 1961–1973, 1997.
Google Scholar
Ferguson N. Empire: The Rise and Demise of the British World Order and Lessons for Global Power, Basic Books, 2003.
Google Scholar
Foertsch T. and Schroeder V. Hyperbolicity, CAT( − 1)–spaces and the Ptolemy Inequality, Math. Ann., Vol. 350, pp. 339–356, 2011.
MathSciNet
MATH
Google Scholar
Frankild A. and Sather–Wagstaff S. The set of semidualizing complexes is a nontrivial metric space, J. Algebra, Vol. 308, pp. 124–143, 2007.
MathSciNet
MATH
Google Scholar
Frieden B.R. Physics from Fisher information, Cambridge Univ. Press, 1998.
Google Scholar
Gabidulin E.M. and Simonis J. Metrics Generated by Families of Subspaces, IEEE Transactions on Information Theory, Vol. 44–3, pp. 1136–1141, 1998.
MathSciNet
Google Scholar
Giles J.R. Introduction to the Analysis of Metric Spaces, Australian Math. Soc. Lecture Series, Cambridge Univ. Press, 1987.
Google Scholar
Godsil C.D. and McKay B.D. The Dimension of a Graph, Quart. J. Math. Oxford Series (2), Vol. 31, pp. 423–427, 1980.
Google Scholar
Goh K.I., Oh E.S., Jeong H., Kahng B. and Kim D. Classification of Scale Free Networks, Proc. Nat. Acad. Sci. US, Vol. 99, pp. 12583–12588, 2002.
MathSciNet
MATH
Google Scholar
Goppa V.D. Rational Representation of Codes and (L,g)–codes, Probl. Peredachi Inform., Vol. 7–3, pp. 41–49, 1971.
MathSciNet
Google Scholar
Gotoh O. An Improved Algorithm for Matching Biological Sequences, J. of Molecular Biology, Vol. 162, pp. 705–708, 1982.
Google Scholar
Grabowski R., Khosa P. and Choset H. Development and Deployment of a Line of Sight Virtual Sensor for Heterogeneous Teams, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, 2004.
Google Scholar
Gruber P.M. The space of Convex Bodies in Handbook of Convex Geometry, Gruber P.M. and Wills J.M. (eds.), Elsevier Sci. Publ., 1993.
Google Scholar
Hafner J., Sawhney H.S., Equitz W., Flickner M. and Niblack W. Efficient Color Histogram Indexing for Quadratic Form Distance Functions, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17–7, pp. 729–736, 1995.
Google Scholar
Hall E.T. The Hidden Dimension, Anchor Books, New York, 1969.
Google Scholar
Hamilton W.R. Elements of Quaternions, second edition 1899–1901 enlarged by C.J. Joly, reprinted by Chelsea Publ., New York, 1969.
Google Scholar
Harispe S., Ranwez S., Janaqi S. and Montmain J. Semantic Measures for the Comparison of Units of Language, Concepts or Instances from Text and Knowledge Base Analysis, arXiv:1310.1285[cs.CL], 2013.
Google Scholar
Head K. and Mayer T. Illusory Border Effects: Distance mismeasurement inflates estimates of home bias in trade, CEPII Working Paper No 2002–01, 2002.
Google Scholar
Hemmerling A. Effective Metric Spaces and Representations of the Reals, Theoretical Comp. Sci., Vol. 284–2, pp. 347–372, 2002.
MathSciNet
Google Scholar
Higham N.J. Matrix Nearness Problems and Applications, in Applications of Matrix Theory, Gover M.J.C. and Barnett S. (eds.), pp. 1–27. Oxford University Press, 1989.
Google Scholar
Hofstede G. Culture’s Consequences: International Differences in Work–related Values, Sage Publ., California, 1980.
Google Scholar
Huber K. Codes over Gaussian Integers, IEEE Trans. Inf. Theory, Vol. 40–1, pp. 207–216, 1994.
Google Scholar
Huber K. Codes over Eisenstein–Jacobi Integers, Contemporary Math., Vol. 168, pp. 165–179, 1994.
Google Scholar
Huffaker B., Fomenkov M., Plummer D.J., Moore D. and Claffy K., Distance Metrics in the Internet, Proc. IEEE Int. Telecomm. Symp. (ITS–2002), 2002.
Google Scholar
Indyk P. and Venkatasubramanian S. Approximate Congruence in Nearly Linear Time, Proc. 11th ACM–SIAM symposium on Discrete Algorithms, pp. 354–260, San Francisco, 2000.
Google Scholar
Isbell J. Six Theorems about Metric Spaces, Comment. Math. Helv., Vol. 39, pp. 65–74, 1964.
MathSciNet
MATH
Google Scholar
Isham C.J., Kubyshin Y. and Penteln P. Quantum Norm Theory and the Quantization of Metric Topology, Class. Quantum Gravity, Vol. 7, pp. 1053–1074, 1990.
MATH
Google Scholar
Ivanova R. and Stanilov G. A Skew–symmetric Curvature Operator in Riemannian Geometry, in Symposia Gaussiana, Conf. A, Behara M., Fritsch R. and Lintz R. (eds.), pp. 391–395, 1995.
Google Scholar
Jiang T., Wang L. and Zhang K. Alignment of Trees – an Alternative to Tree Edit, in Combinatorial Pattern Matching, Lecture Notes in Comp. Science, Vol. 807, Crochemore M. and Gusfield D. (eds.), Springer–Verlag, 1994.
Google Scholar
Klein R. Voronoi Diagrams in the Moscow Metric, Graphtheoretic Concepts in Comp. Sci., Vol. 6, pp. 434–441, 1988.
Google Scholar
Klein R. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Comp. Sci., Springer–Verlag, 1989.
MATH
Google Scholar
Klein D.J. and Randic M. Resistance distance, J. of Math. Chemistry, Vol. 12, pp. 81–95, 1993.
MathSciNet
Google Scholar
Koella J.C. The Spatial Spread of Altruism Versus the Evolutionary Response of Egoists, Proc. Royal Soc. London, Series B, Vol. 267, pp. 1979–1985, 2000.
Google Scholar
Kogut B. and Singh H. The Effect of National Culture on the Choice of Entry Mode, J. of Int. Business Studies, Vol. 19–3, pp. 411–432, 1988.
Google Scholar
Kosheleva O., Kreinovich V. and Nguyen H.T. On the Optimal Choice of Quality Metric in Image Compression, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 7–9 April 2002, Santa Fe, IEEE Comp. Soc. Digital Library, Electronic edition, pp. 116–120, 2002.
Google Scholar
Larson R.C. and Li V.O.K. Finding Minimum Rectilinear Distance Paths in the Presence of Barriers, Networks, Vol. 11, pp. 285–304, 1981.
MathSciNet
MATH
Google Scholar
Li M., Chen X., Li X., Ma B. and Vitányi P. The Similarity Metric, IEEE Trans. Inf. Theory, Vol. 50–12, pp. 3250–3264, 2004.
Google Scholar
Luczak E. and Rosenfeld A. Distance on a Hexagonal Grid, IEEE Trans. on Comp., Vol. 25–5, pp. 532–533, 1976.
Google Scholar
Mak King–Tim and Morton A.J. Distances between Traveling Salesman Tours, Discrete Appl. Math., Vol. 58, pp. 281–291, 1995.
Google Scholar
Martin K. A foundation for computation, Ph.D. Thesis, Tulane University, Department of Math., 2000.
Google Scholar
Martin W.J. and Stinson D.R. Association Schemes for Ordered Orthogonal Arrays and (T, M, S)–nets, Can. J. Math., Vol. 51, pp. 326–346, 1999.
MathSciNet
MATH
Google Scholar
Mascioni V. Equilateral Triangles in Finite Metric Spaces, The Electronic J. Combinatorics, Vol. 11, 2004, R18.
Google Scholar
S.G. Matthews, Partial metric topology, Research Report 212, Dept. of Comp. Science, University of Warwick, 1992.
Google Scholar
McCanna J.E. Multiply–sure Distances in Graphs, Congressus Numerantium, Vol. 97, pp. 71–81, 1997.
MathSciNet
Google Scholar
Melter R.A. A Survey of Digital Metrics, Contemporary Math., Vol. 119, 1991.
Google Scholar
Monjardet B. On the Comparison of the Spearman and Kendall Metrics between Linear Orders, Discrete Math., Vol. 192, pp. 281–292, 1998.
MathSciNet
MATH
Google Scholar
Morgan J.H. Pastoral ecstasy and the authentic self: Theological meanings in symbolic distance, Pastoral Psychology, Vol. 25–2, pp. 128–137, 1976.
Google Scholar
Mucherino A., Lavor C., Liberti L. and Maculan N. (eds.) Distance Geometry, Springer, 2013.
Google Scholar
Murakami H. Some Metrics on Classical Knots, Math. Ann., Vol. 270, pp. 35–45, 1985.
MathSciNet
MATH
Google Scholar
Needleman S.B. and Wunsh S.D. A general Method Applicable to the Search of the Similarities in the Amino Acids Sequences of Two Proteins, J. of Molecular Biology, Vol. 48, pp. 443–453, 1970.
Google Scholar
Nishida T. and Sugihara K. FEM–like Fast Marching Method for the Computation of the Boat–Sail Distance and the Associated Voronoi Diagram, Technical Reports, METR 2003–45, Dept. Math. Informatics, The University of Tokyo, 2003.
Google Scholar
Okabe A., Boots B. and Sugihara K. Spatial Tessellation: Concepts and Applications of Voronoi Diagrams, Wiley, 1992.
Google Scholar
Okada D. and M. Bingham P.M. Human uniqueness–self–interest and social cooperation, J. Theor. Biology, Vol. 253–2, pp. 261–270, 2008.
Google Scholar
Oliva D., Samengo I., Leutgeb S. and Mizumori S. A Subjective Distance between Stimuli: Quantifying the Metric Structure of Representations, Neural Computation, Vol. 17–4, pp. 969–990, 2005.
Google Scholar
Ong C.J. and Gilbert E.G. Growth distances: new measures for object separation and penetration, IEEE Transactions in Robotics and Automation, Vol. 12–6, pp. 888–903, 1996.
Google Scholar
Ophir A. and Pinchasi R. Nearly equal distances in metric spaces, Discrete Appl. Math., Vol. 174, pp. 122–127, 2014.
MathSciNet
MATH
Google Scholar
Orlicz W. Über eine Gewisse Klasse von Raumen vom Typus B
′, Bull. Int. Acad. Pol. Series A, Vol. 8–9, pp. 207–220, 1932.
Google Scholar
Ozer H., Avcibas I., Sankur B. and Memon N.D. Steganalysis of Audio Based on Audio Quality Metrics, Security and Watermarking of Multimedia Contents V (Proc. of SPIEIS and T), Vol. 5020, pp. 55–66, 2003.
Google Scholar
Page E.S. On Monte–Carlo Methods in Congestion Problem. 1. Searching for an Optimum in Discrete Situations, J. Oper. Res., Vol. 13–2, pp. 291–299, 1965.
Google Scholar
Petz D. Monotone Metrics on Matrix Spaces, Linear Algebra Appl., Vol. 244, 1996.
Google Scholar
PlanetMath.org, http://planetmath.org/encyclopedia/
Rachev S.T. Probability Metrics and the Stability of Stochastic Models, Wiley, New York, 1991.
MATH
Google Scholar
Requardt M. and Roy S. Quantum Spacetime as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces, Class. Quantum Gravity, Vol. 18, pp. 3039–3057, 2001.
MathSciNet
MATH
Google Scholar
Resnikoff H.I. On the geometry of color perception, AMS Lectures on Math. in the Life Sciences, Vol. 7, pp. 217–232, 1974.
MathSciNet
Google Scholar
Ristad E. and Yianilos P. Learning String Edit Distance, IEEE Transactions on Pattern Recognition and Machine Intelligence, Vol. 20–5, pp. 522–532, 1998.
Google Scholar
Rocher T., Robine M., Hanna P. and Desainte–Catherine M. A Survey of Chord Distances With Comparison for Chord Analysis, Proc. Int. Comp. Music Conf., pp. 187–190, New York, 2010.
Google Scholar
Rosenfeld A. and Pfaltz J. Distance Functions on Digital Pictures, Pattern Recognition, Vol. 1, pp. 33–61, 1968.
MathSciNet
Google Scholar
Rubner Y., Tomasi C. and Guibas L.J. The Earth Mover’s Distance as a Metric for Image Retrieval, Int. J. of Comp. Vision, Vol. 40–2, pp. 99–121, 2000.
Google Scholar
Rummel R.J. Understanding Conflict and War, Sage Publ., California, 1976.
Google Scholar
Schweizer B. and Sklar A. Probabilistic Metric Spaces, North–Holland, 1983.
Google Scholar
Selkow S.M. The Tree–to–tree Editing Problem, Inform. Process. Lett., Vol. 6–6, pp. 184–186, 1977.
MathSciNet
Google Scholar
Sharma B.D. and Kaushik M.L. Limits intensity random and burst error codes with class weight considerations, Elektron. Inform.–verarb. Kybernetik, Vol. 15, pp. 315–321, 1979.
MathSciNet
MATH
Google Scholar
Tai K.–C. The Tree–to–tree Correction Problem, J. of the Association for Comp. Machinery, Vol. 26, pp. 422–433, 1979.
MathSciNet
MATH
Google Scholar
Tailor B. Introduction: How Far, How Near: Distance and Proximity in the Historical Imagination, History Workshop J., Vol. 57, pp. 117–122, 2004.
Google Scholar
Tymoczko D. The Geometry of Musical Chords, Science, Vol. 313, Nr. 5783, pp. 72–74, 2006.
Google Scholar
Tomimatsu A. and Sato H. New Exact Solution for the Gravitational Field of a Spinning Mass, Phys. Rev. Letters, Vol. 29, pp. 1344–1345, 1972.
Google Scholar
Vardi Y. Metrics Useful in Network Tomography Studies, Signal Processing Letters, Vol. 11–3, pp. 353–355, 2004.
Google Scholar
Veltkamp R.C. and Hagendoorn M. State–of–the–Art in Shape Matching, in Principles of Visual Information Retrieval, Lew M. (ed.), pp. 87–119, Springer–Verlag, 2001.
Google Scholar
Watts D.J. Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton Univ. Press, 1999.
Google Scholar
Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972.
Google Scholar
Weisstein E.W. CRC Concise Encyclopedia of Math., CRC Press, 1999.
Google Scholar
Weiss I. Metric 1–spaces, arXiv:1201.3980[math.MG], 2012.
Google Scholar
Wellens R.A. Use of a Psychological Model to Assess Differences in Telecommunication Media, in Teleconferencing and Electronic Communication, Parker L.A. and Olgren O.H. (eds.), pp. 347–361, Univ. of Wisconsin Extension, 1986.
Google Scholar
Wikipedia, the Free Encyclopedia, http://en.wikipedia.org
Wilson D.R. and Martinez T.R. Improved Heterogeneous Distance Functions, J. of Artificial Intelligence Research, Vol. 6, p. 134, 1997.
MathSciNet
Google Scholar
Wolf S. and Pinson M.H. Spatial–Temporal Distortion Metrics for In–Service Quality Monitoring of Any Digital Video System, Proc. of SPIE Int. Symp. on Voice, Video, and Data Commun., September 1999.
Google Scholar
Yianilos P.N. Normalized Forms for Two Common Metrics, NEC Research Institute, Report 91–082–9027–1, 1991.
Google Scholar
Young N. Some Function–Theoretic Issues in Feedback Stabilisation, Holomorphic Spaces, MSRI Publication, Vol. 33, 1998.
Google Scholar
Yutaka M., Ohsawa Y. and Ishizuka M. Average–Clicks: A New Measure of Distance on the World Wide Web, J. Intelligent Information Systems, Vol. 20–1, pp. 51–62, 2003.
Google Scholar
Zelinka B. On a Certain Distance between Isomorphism Classes of Graphs, Casopus. Pest. Mat., Vol. 100, pp. 371–373, 1975.
MathSciNet
MATH
Google Scholar