Diversity-Driven Selection of Multiple Crossover Operators for the Capacitated Arc Routing Problem

  • Pietro Consoli
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8600)

Abstract

The Capacitated Arc Routing Problem (CARP) is a NP-Hard routing problem with strong connections with real world problems. In this work we aim to enhance the performance of MAENS, a state-of-the-art algorithm, through a self-adaptive scheme to choose the most suitable operator and a diversity-driven ranking operator. Experimental results on 181 problem instances show how these techniques can both improve the results of the current state-of-the-art algorithms and provide good directions to develop EAs with a more robust approximation ratio.

Keywords

Memetic Algorithm Stochastic Ranking Capacitated Arc Routing Problem Self-Adaptation Approximation Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2-3), 235–256 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Benavent, E., Campos, V., Corberán, A., Mota, E.: The capacitated arc routing problem: lower bounds. Networks 22(7), 669–690 (1992)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research 147(3), 629–643 (2003)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chu, F., Labadi, N., Prins, C.: A scatter search for the periodic capacitated arc routing problem. European Journal of Operational Research 169(2), 586–605 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M., et al.: Adaptive operator selection with dynamic multi-armed bandits. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 913–920 (2008)Google Scholar
  6. 6.
    DeArmon, J.S.: A comparison of heuristics for the capacitated Chinese postman problem. Ph.D. thesis, University of Maryland (1981)Google Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Eglese, R.W.: Routing winter gritting vehicles. Discrete Applied Mathematics 48(3), 231–244 (1994)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Garcia-Najera, A.: Preserving population diversity for the multi-objective vehicle routing problem with time windows. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2689–2692. ACM (2009)Google Scholar
  11. 11.
    Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Machine Learning 5(4), 407–425 (1990)Google Scholar
  12. 12.
    Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    He, J., Yao, X.: An analysis of evolutionary algorithms for finding approximation solutions to hard optimisation problems. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2004–2010. IEEE (2003)Google Scholar
  14. 14.
    Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undirected capacitated arc routing problem. Transportation Science 35(4), 425–434 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Hinkley, D.V.: Inference about the change-point from cumulative sum tests. Biometrika 58(3), 509–523 (1971)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)Google Scholar
  17. 17.
    Lacomme, P., Prins, C., Ramdane-Chérif, W.: A genetic algorithm for the capacitated arc routing problem and its extensions. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWorkshop 2001. LNCS, vol. 2037, pp. 473–483. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms for arc routing problems. Annals of Operations Research 131(1-4), 159–185 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lacomme, P., Prins, C., Tanguy, A.: First competitive ant colony scheme for the CARP. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 426–427. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  21. 21.
    Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Mei, Y., Li, X., Yao, X.: Cooperative co-evolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary Computation (accepted on July 31, 2013)Google Scholar
  23. 23.
    Mei, Y., Tang, K., Yao, X.: A global repair operator for capacitated arc routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3), 723–734 (2009)CrossRefGoogle Scholar
  24. 24.
    Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Transactions on Evolutionary Computation 15(2), 151–165 (2011)CrossRefGoogle Scholar
  25. 25.
    Mei, Y., Tang, K., Yao, X.: A memetic algorithm for periodic capacitated arc routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(6), 1654–1667 (2011)CrossRefGoogle Scholar
  26. 26.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Dover Publications (1998)Google Scholar
  27. 27.
    Pearn, W.L.: Augment-insert algorithms for the capacitated arc routing problem. Computers & Operations Research 18(2), 189–198 (1991)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  29. 29.
    Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii: genetic search. INFORMS Journal on Computing 8(2), 165–172 (1996)CrossRefMATHGoogle Scholar
  30. 30.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013), http://www.R-project.org
  31. 31.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)CrossRefGoogle Scholar
  32. 32.
    Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Transactions on Evolutionary Computation 13(5), 1151–1166 (2009)CrossRefGoogle Scholar
  33. 33.
    Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1539–1546. ACM (2005)Google Scholar
  34. 34.
    Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research 22(3), 329–337 (1985)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar
  36. 36.
    Xing, L.N., Rohlfshagen, P., Chen, Y.W., Yao, X.: A hybrid ant colony optimization algorithm for the extended capacitated arc routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(4), 1110–1123 (2011)CrossRefGoogle Scholar
  37. 37.
    Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: An evolutionary approach to the multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary Computation 14(3), 356–374 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pietro Consoli
    • 1
  • Xin Yao
    • 1
  1. 1.CERCIA, School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations