Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case

  • Christian Kloimüllner
  • Petrina Papazek
  • Bin Hu
  • Günther R. Raidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8600)

Abstract

Operators of public bicycle sharing systems (BSSs) have to regularly redistribute bikes across their stations in order to avoid them getting overly full or empty. We consider the dynamic case where this is done while the system is in use. There are two main objectives: On the one hand it is desirable to reach particular target fill levels at the end of the process so that the stations are likely to meet user demands for the upcoming day(s). On the other hand operators also want to prevent stations from running empty or full during the rebalancing process which would lead to unsatisfied customers. We extend our previous work on the static variant of the problem by introducing an efficient way to model the dynamic case as well as adapting our previous greedy and PILOT construction heuristic, variable neighborhood search and GRASP. Computational experiments are performed on instances based on real-world data from Citybike Wien, a BSS operator in Vienna, where the model for user demands is derived from historical data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeMaio, P.: Bike-sharing: History, impacts, models of provision, and future. Journal of Public Transportation 12(4), 41–56 (2009)MathSciNetGoogle Scholar
  2. 2.
    Raidl, G.R., Hu, B., Rainer-Harbach, M., Papazek, P.: Balancing bicycle sharing systems: Improving a VNS by efficiently determining optimal loading operations. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 130–143. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems. Technical Report TR 186-1-13-01, Vienna, Austria (29 pages, 2013, submitted to the JOGO) Google Scholar
  5. 5.
    Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B.: A PILOT/VND/GRASP hybrid for the static balancing of public bicycle sharing systems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST. LNCS, vol. 8111, pp. 372–379. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier, F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO – Operations Research 45(1), 37–61 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transp. and Log., 1–43 (2013)Google Scholar
  9. 9.
    Di Gaspero, L., Rendl, A., Urli, T.: A hybrid ACO+CP for balancing bicycle sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 198–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing bike sharing systems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 758–773. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Contardo, C., Morency, C., Rousseau, L.M.: Balancing a dynamic public bike-sharing system. Technical Report CIRRELT-2012-09, Montreal, Canada (2012)Google Scholar
  12. 12.
    Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School of Business, Carnegie Mellon University (2013)Google Scholar
  13. 13.
    Chemla, D., Meunier, F., Pradeau, T., Calvo, R.W., Yahiaoui, H.: Self-service bike sharing systems: simulation, repositioning, pricing. Technical Report hal-00824078, CERMICS (2013)Google Scholar
  14. 14.
    Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redistribution and online price incentives in shared mobility systems. Technical report, Cornell University, NY (2013)Google Scholar
  15. 15.
    Lin, J.H., Chou, T.C.: A geo-aware and VRP-based public bicycle redistribution system. International Journal of Vehicular Technology (2012)Google Scholar
  16. 16.
    Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle sharing system design: Formulation and solution. Computers & Industrial Engineering 65(1), 77–86 (2013)CrossRefGoogle Scholar
  17. 17.
    Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing systems: Analysis of Vélib’. Int. Journal of Sustain. Transp. 7(1), 85–106 (2013)CrossRefGoogle Scholar
  18. 18.
    Voß, S., Fink, A., Duin, C.: Looking ahead with the PILOT method. Annals of Operations Research 136, 285–302 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christian Kloimüllner
    • 1
  • Petrina Papazek
    • 1
  • Bin Hu
    • 1
  • Günther R. Raidl
    • 1
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations