Abstract
The irace package implements a flexible tool for the automatic configuration of algorithms. However, irace itself has specific parameters to customize the search process according to the tuning scenario. In this paper, we analyze five parameters of irace: the number of iterations, the number of instances seen before the first elimination test, the maximum number of elite configurations, the statistical test and the confidence level of the statistical test. These parameters define some key aspects of the way irace identifies good configurations. Originally, their values have been set based on rules of thumb and an intuitive understanding of the configuration process. This work aims at giving insights about the sensitivity of irace to these parameters in order to guide their setting and further improvement of irace.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)
Babić, D., Hutter, F.: Spear theorem prover. In: SAT 2008: Proceedings of the SAT 2008 Race (2008)
Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)
Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: Proceedings of CEC 2005, pp. 773–780. IEEE Press (2005)
Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. SCI, vol. 197. Springer, Heidelberg (2009)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)
Branke, J., Elomari, J.: Racing with a fixed budget and a self-adaptive significance level. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 272–280. Springer, Heidelberg (2013)
Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons (1999)
Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., et al. (eds.) Autonomous Search, pp. 37–71. Springer, Berlin (2012)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)
López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)
López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)
Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 190–204. Springer, Heidelberg (2012)
Siegel, S., Castellan Jr., N.J.: Non Parametric Statistics for the Behavioral Sciences, 2nd edn. McGraw Hill (1988)
Smit, S.K., Eiben, A.E.: Beating the “world champion” evolutionary algorithm via REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 1–8. IEEE Press (2010)
Stützle, T.: ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem (2002), http://www.aco-metaheuristic.org/aco-code/
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez Cáceres, L., López-Ibáñez, M., Stützle, T. (2014). An Analysis of Parameters of irace . In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-44320-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44319-4
Online ISBN: 978-3-662-44320-0
eBook Packages: Computer ScienceComputer Science (R0)