Skip to main content

An Analysis of Parameters of irace

  • Conference paper
Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014)

Abstract

The irace package implements a flexible tool for the automatic configuration of algorithms. However, irace itself has specific parameters to customize the search process according to the tuning scenario. In this paper, we analyze five parameters of irace: the number of iterations, the number of instances seen before the first elimination test, the maximum number of elite configurations, the statistical test and the confidence level of the statistical test. These parameters define some key aspects of the way irace identifies good configurations. Originally, their values have been set based on rules of thumb and an intuitive understanding of the configuration process. This work aims at giving insights about the sensitivity of irace to these parameters in order to guide their setting and further improvement of irace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Babić, D., Hutter, F.: Spear theorem prover. In: SAT 2008: Proceedings of the SAT 2008 Race (2008)

    Google Scholar 

  3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: Proceedings of CEC 2005, pp. 773–780. IEEE Press (2005)

    Google Scholar 

  5. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. SCI, vol. 197. Springer, Heidelberg (2009)

    Google Scholar 

  6. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

    Chapter  Google Scholar 

  7. Branke, J., Elomari, J.: Racing with a fixed budget and a self-adaptive significance level. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 272–280. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons (1999)

    Google Scholar 

  9. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., et al. (eds.) Autonomous Search, pp. 37–71. Springer, Berlin (2012)

    Google Scholar 

  10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)

    MATH  Google Scholar 

  12. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)

    Article  Google Scholar 

  14. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 190–204. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Siegel, S., Castellan Jr., N.J.: Non Parametric Statistics for the Behavioral Sciences, 2nd edn. McGraw Hill (1988)

    Google Scholar 

  16. Smit, S.K., Eiben, A.E.: Beating the “world champion” evolutionary algorithm via REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 1–8. IEEE Press (2010)

    Google Scholar 

  17. Stützle, T.: ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem (2002), http://www.aco-metaheuristic.org/aco-code/

  18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez Cáceres, L., López-Ibáñez, M., Stützle, T. (2014). An Analysis of Parameters of irace . In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics