Skip to main content

Phase Transition and Landscape Properties of the Number Partitioning Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8600)

Abstract

This paper empirically studies basic properties of the fitness landscape of random instances of number partitioning problem, with a focus on how these properties change with the phase transition. The properties include number of local and global optima, number of plateaus, basin size and its correlation with fitness. The only two properties that were found to change when the problem crosses the phase transition are the number of global optima and the number of plateaus, the rest of the properties remained oblivious to the phase transition. This paper, also, studies the effect of different distributions of the weights and different neighbourhood operators on the problem landscape.

Keywords

  • combinatorial optimisation
  • phase transition
  • partitioning problem
  • makespan scheduling
  • fitness landscape

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44320-0_18
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44320-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the integer partitioning problem. Random Structures & Algorithms 19(3-4), 247–288 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. Journal of Artificial Intelligence Research 7, 249–281 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Fu, Y.: The use and abuse of statistical mechanics in computational complexity. In: Stein, D.L. (ed.) Lectures in the Sciences of Complexity, vol. 1, pp. 815–826. Addison-Wesley, Reading (1989)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of books in the mathematical sciences. W.H. Freeman (1979)

    Google Scholar 

  5. Gent, I.P., Walsh, T.: Analysis of heuristics for number partitioning. Computational Intelligence 14(3), 430–451 (1998)

    CrossRef  MathSciNet  Google Scholar 

  6. Hartmann, A.K., Weigt, M.: Phase Transitions in Combinatorial Optimization Problems. John Wiley & Sons (2006)

    Google Scholar 

  7. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. Theoretical Aspects of Evolutionary Computing, 175–206 (2001)

    Google Scholar 

  8. Mertens, S.: Phase transition in the number partitioning problem. Physical Review Letters 81(20), 4281–4284 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Mertens, S.: A physicist’s approach to number partitioning. Theoretical Computer Science 265(1-2), 79–108 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Physical Review Letters 94, 197205 (2005)

    CrossRef  Google Scholar 

  11. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Stadler, P.F., Hordijk, W., Fontanari, J.F.: Phase transition and landscape statistics of the number partitioning problem. Physical Review E 67(5), 056701 (2003)

    Google Scholar 

  13. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments on Theoretical Biology 8(4-5), 389–431 (2002)

    CrossRef  Google Scholar 

  14. Tayarani, M., Prugel-Bennett, A.: On the landscape of combinatorial optimisation problems. IEEE Transactions on Evolutionary Computation PP(99) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alyahya, K., Rowe, J.E. (2014). Phase Transition and Landscape Properties of the Number Partitioning Problem. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)