Phase Transition and Landscape Properties of the Number Partitioning Problem

  • Khulood Alyahya
  • Jonathan E. Rowe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8600)

Abstract

This paper empirically studies basic properties of the fitness landscape of random instances of number partitioning problem, with a focus on how these properties change with the phase transition. The properties include number of local and global optima, number of plateaus, basin size and its correlation with fitness. The only two properties that were found to change when the problem crosses the phase transition are the number of global optima and the number of plateaus, the rest of the properties remained oblivious to the phase transition. This paper, also, studies the effect of different distributions of the weights and different neighbourhood operators on the problem landscape.

Keywords

combinatorial optimisation phase transition partitioning problem makespan scheduling fitness landscape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the integer partitioning problem. Random Structures & Algorithms 19(3-4), 247–288 (2001)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. Journal of Artificial Intelligence Research 7, 249–281 (1997)MATHMathSciNetGoogle Scholar
  3. 3.
    Fu, Y.: The use and abuse of statistical mechanics in computational complexity. In: Stein, D.L. (ed.) Lectures in the Sciences of Complexity, vol. 1, pp. 815–826. Addison-Wesley, Reading (1989)Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of books in the mathematical sciences. W.H. Freeman (1979)Google Scholar
  5. 5.
    Gent, I.P., Walsh, T.: Analysis of heuristics for number partitioning. Computational Intelligence 14(3), 430–451 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hartmann, A.K., Weigt, M.: Phase Transitions in Combinatorial Optimization Problems. John Wiley & Sons (2006)Google Scholar
  7. 7.
    Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. Theoretical Aspects of Evolutionary Computing, 175–206 (2001)Google Scholar
  8. 8.
    Mertens, S.: Phase transition in the number partitioning problem. Physical Review Letters 81(20), 4281–4284 (1998)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Mertens, S.: A physicist’s approach to number partitioning. Theoretical Computer Science 265(1-2), 79–108 (2001)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Physical Review Letters 94, 197205 (2005)CrossRefGoogle Scholar
  11. 11.
    Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Stadler, P.F., Hordijk, W., Fontanari, J.F.: Phase transition and landscape statistics of the number partitioning problem. Physical Review E 67(5), 056701 (2003)Google Scholar
  13. 13.
    Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments on Theoretical Biology 8(4-5), 389–431 (2002)CrossRefGoogle Scholar
  14. 14.
    Tayarani, M., Prugel-Bennett, A.: On the landscape of combinatorial optimisation problems. IEEE Transactions on Evolutionary Computation PP(99) (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Khulood Alyahya
    • 1
  • Jonathan E. Rowe
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamUK

Personalised recommendations