Skip to main content

Improving Search Engines’ Document Ranking Employing Semantics and an Inference Network

  • Conference paper
  • First Online:
Web Information Systems and Technologies (WEBIST 2013)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 189))

Included in the following conference series:

Abstract

The users search mainly diverse information from several topics and their needs are difficult to be satisfied from the techniques currently employed in commercial search engines and without intervention from the user. In this paper, a novel framework is presented for performing re-ranking in the results of a search engine based on feedback from the user. The proposed scheme combines smoothly techniques from the area of Inference Networks and data from semantic knowledge bases. The novelty lies in the construction of a probabilistic network for each query which takes as input the belief of the user to each result (initially, all are equivalent) and produces as output a new ranking for the search results. We have constructed an implemented prototype that supports different Web search engines and it can be extended to support any search engine. Finally extensive experiments were performed using the proposed methods depicting the improvement of the ranking of the search engines results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdo, A., Salim, N., Ahmed, A.: Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network. J. Biomol. Screen. 16, 1081–1088 (2011)

    Article  Google Scholar 

  2. Acid, S., de Campos, L.M., Fernandez, J.M., Huete, J.F.: An information retrieval model based on simple Bayesian networks. Int. J. Intell. Syst. 18, 251–265 (2003)

    Article  MATH  Google Scholar 

  3. Ahmed, A., Abdo, A., Salim, N.: Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments. Sci. World J. 2012, 1–7 (2012). Article ID 410914

    Google Scholar 

  4. Antoniou, D., Plegas, Y., Tsakalidis, A., Tzimas, G., Viennas, E.: Dynamic refinement of search engines results utilizing the user intervention. J. Syst. Softw. 85(7), 1577–1587 (2012)

    Article  Google Scholar 

  5. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology Behind Search. Addison Wesley, Essex (2011)

    Google Scholar 

  6. Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. Inf. Retrieval 15(1), 54–92 (2012)

    Article  Google Scholar 

  7. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  8. Brandt, C., Joachims, T., Yue, Y., Bank, J.: Dynamic ranked retrieval. In: WSDM ’11 (2011)

    Google Scholar 

  9. Callan, J.: The ClueWeb09 dataset. http://boston.lti.cs.cmu.edu/clueweb09 (2009). Accessed 1 Aug 2012)

  10. Chapelle, O., Zhang, Y.: A dynamic Bayesian network click model for web search ranking. In: Proceedings of the 18th International Conference on WWW, pp. 1–10. ACM, New York, USA (2009)

    Google Scholar 

  11. Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the TREC 2009 web track. In Proceedings of the 18th TREC Conference (2009)

    Google Scholar 

  12. Clarke, C.L.A., Craswell, N., Soboroff, I., Cormack, G.: Overview of the TREC 2010 web track. In: Proceedings of the 19th TREC Conference (2010)

    Google Scholar 

  13. Clarke, C.L.A., Craswell, N., Soboroff, I., Voorhees, E.M.: Overview of the TREC 2011 Web Track. In: Proceedings of the 20th TREC Conference (2011)

    Google Scholar 

  14. Fellbaum, C.: WordNet, an electronic lexical database. The MIT Press, Cambridge (1998)

    Google Scholar 

  15. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM ‘10), pp. 1625–1628. New York, USA, (2010)

    Google Scholar 

  16. Howe, A.E., Dreilinger, D.: SavvySearch: a meta-search engine that learns which search engines to query. AI Mag. 18(2), 19–25 (1997)

    Google Scholar 

  17. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd International ACM SIGIR Conference, pp. 41–48 (2000)

    Google Scholar 

  18. Lee, J., Kim, H., Lee, S.: Exploiting taxonomic knowledge for personalized search: a bayesian belief network-based approach. J. Inf. Sci. Eng. 27, 1413–1433 (2011)

    MATH  Google Scholar 

  19. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)

    Google Scholar 

  20. Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006)

    Article  Google Scholar 

  21. Makris, C., Plegas, Y., Theodoridis, E.: Improved text annotation with Wikipedia entities. SAC 2013, 288–295 (2013)

    Google Scholar 

  22. Meng, W., Yu, C., Liu, K.: Building efficient and effective metasearch engines. ACM Comput. Surv. 34(1), 48–89 (2002)

    Article  Google Scholar 

  23. Metzler, D., Turtle, H., Croft, W.B.: Indri: A language-model based search engine for complex queries (extended version). IR 407, University of Massachusetts (2005)

    Google Scholar 

  24. Navigli, R., Ponzetto, S.P.: BabelNet: building a very large multilingual semantic network. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), pp. 216–225 (2010)

    Google Scholar 

  25. Niedermayer, D.: An introduction to Bayesian networks and their contemporary applications. In: Holmes, D.E., Jain, L.C. (eds.) SCI. Studies in Computational Intelligence SCI, vol. 156, pp. 117–130. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Plegas, Y., Stamou, S.: Reducing information redundancy in search results. SAC 2013, 886–893 (2013)

    Google Scholar 

  27. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  28. Strohman, T., Metzler, D., Turtle, H., Croft, B.: Indri: a language model-based search engine for complex queries. In: Proceedings of the International Conference on Intelligence Analysis (May 2–6, 2005), McLean, VA (2005)

    Google Scholar 

  29. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on WWW, pp. 697–706 (2007)

    Google Scholar 

  30. Tebaldi, C., West, M.: Bayesian inference of network traffic using link data. J. Am. Stat. Assoc. 93, 557–573 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Teevan, J.B.: Improving information retrieval with textual analysis: Bayesian models and beyond. Master’s Thesis, Department of Electrical Engineering, MIT Press (2011)

    Google Scholar 

  32. Turtle, H.R.: Inference networks for document retrieval. Ph.D. Thesis (1991)

    Google Scholar 

  33. ClueWeb09 collection. http://lemurproject.org/clueweb09/

  34. SerfSIN Web Interface. http://150.140.142.5/research/SerfSIN/

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Plegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makris, C., Plegas, Y., Tzimas, G., Viennas, E. (2014). Improving Search Engines’ Document Ranking Employing Semantics and an Inference Network. In: Krempels, KH., Stocker, A. (eds) Web Information Systems and Technologies. WEBIST 2013. Lecture Notes in Business Information Processing, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44300-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44300-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44299-9

  • Online ISBN: 978-3-662-44300-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics