Skip to main content

Feature Computing and Signal Classifications

  • Chapter
  • First Online:
  • 635 Accesses

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

Abstract

In this chapter, we describe the feature computing and pattern analysis methods for VAG signal classifications. The purpose of feature selection is to study the feature correlations and then exclude the redundant features before pattern classifications. The reduction of feature dimensions may avoid excessive computation expenses, such that the pattern analysis methods based on the most informative features can also achieve favorable classification results. The signal classification methods include Fisher’s linear discriminant analysis, radial basis function network, Vapnik and least-squares support vector machines, Bayesian decision rule, and multiple classifier fusion systems. The text also presents the common diagnostic performance techniques such as cross-validation, confusion matrix, and receiver operating characteristic curves. Finally, we review the state-of-the-art methods for the VAG signal classifications and compare the results reported in recent literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  MathSciNet  Google Scholar 

  2. Cai S, Yang S, Zheng F, Lu M, Wu Y, Krishnan S (2013) Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Comput Math Methods Med 2013:Article ID 904267

    Google Scholar 

  3. Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302–309

    Article  Google Scholar 

  4. Cortes C, Vapnik VN (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  5. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  6. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  7. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  8. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  9. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MATH  MathSciNet  Google Scholar 

  10. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  11. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  12. Hashem S, Schmeiser B (1995) Improving model accuracy using optimal linear combinations of trained neural networks. IEEE Trans Neural Netw 6(3):792–794

    Article  Google Scholar 

  13. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  14. Hornik KM, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  15. Jain AK, Duin RPW, Mao JC (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  16. Kim KS, Seo JH, Kang JU, Song CG (2009) An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput Methods Programs Biomed 94(2):198–206

    Article  Google Scholar 

  17. Kittler J, Hatef M, Duin RPW, Matus J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  18. Krishnan S, Rangayyan RM, Bell GD, Frank CB (2000) Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Trans Biomed Eng 47(6):773–783

    Article  Google Scholar 

  19. Kuncheva LI (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24(2):281–286

    Article  Google Scholar 

  20. Liu K, Luo X, Zheng F, Yang S, Cai S, Wu Y (2014) Classification of knee joint vibroarthrographic signals using k-nearest neighbor algorithm. In: Proceedings of the 27th Canadian conference on electrical and computer engineering, Toronto, pp 150–153

    Google Scholar 

  21. Marill T, Green DM (1963) On the effectiveness of receptors in recognition systems. IEEE Trans Inf Theory 9(1):11–17

    Article  Google Scholar 

  22. Marques de Sa JP (2003) Applied statistics using SPSS, STATISTICA, and MATLAB. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  24. Moussavi ZMK, Rangayyan RM, Bell GD, Frank CB, Ladly KO, Zhang YT (1996) Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Trans Biomed Eng 43(1):15–23

    Article  Google Scholar 

  25. Mu T, Nandi AK, Rangayyan RM (2008) Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Comput Biol Med 38(10):1103–1111

    Article  Google Scholar 

  26. Nash SG, Sofer A (1995) Linear and nonlinear programming. McGraw-Hill, Columbus

    Google Scholar 

  27. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  28. Rangayyan RM, Wu YF (2008) Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med Biol Eng Comput 46(3):223–232

    Article  Google Scholar 

  29. Rangayyan RM, Wu Y (2009) Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann Biomed Eng 37(1):156–163

    Article  Google Scholar 

  30. Rangayyan RM, Wu Y (2010) Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Biomed Signal Process Control 5(1):53–58

    Article  Google Scholar 

  31. Rangayyan RM, Krishnan S, Bell GD, Frank CB, Ladly KO (1997) Parametric representation and screening of knee joint vibroarthrographic signals. IEEE Trans Biomed Eng 44(11):1068–1074

    Article  Google Scholar 

  32. Rangayyan RM, Oloumi F, Wu Y, Cai S (2013) Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed Signal Process Control 8(1):26–29

    Article  Google Scholar 

  33. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  34. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    Book  MATH  Google Scholar 

  35. Ueda N (2000) Optimal linear combination of neural networks for improving classification performance. IEEE Trans Pattern Anal Mach Intell 22(2):207–215

    Article  MathSciNet  Google Scholar 

  36. Umapathy K, Krishnan S (2006) Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals. IEEE Trans Biomed Eng 53(3):517–523

    Article  Google Scholar 

  37. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  38. Vapnik VN, Chervonenkis AY (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Appl 16(2):264–280

    Article  MATH  MathSciNet  Google Scholar 

  39. Whitney AW (1971) A direct method of nonparametric measurement selection. IEEE Trans Comput 20(9):1100–1103

    Article  MATH  MathSciNet  Google Scholar 

  40. Wu Y, Krishnan S (2009) An adaptive classifier fusion method for analysis of knee-joint vibroarthrographic signals. In: Proceedings of 2009 international conference on computational intelligence for measurement systems and applications, Hong Kong, pp 190–193

    Google Scholar 

  41. Wu Y, Krishnan S (2011) Combining least-squares support vector machines for classification of biomedical signals: a case study with knee-joint vibroarthrographic signals. J Exp Theor Artif Intell 23(1):63–77

    Article  Google Scholar 

  42. Wu Y, Shi L (2011) Analysis of altered gait rhythm in amyotrophic lateral sclerosis based on nonparametric probability density function estimation. Med Eng Phys 33(3):347–355

    Article  Google Scholar 

  43. Wu Y, He J, Man Y, Arribas JI (2004) Neural network fusion strategies for identifying breast masses. In: Proceedings of 2004 international joint conference on neural networks, Budapest, pp 2437–2442

    Google Scholar 

  44. Wu Y, Wang C, Ng SC, Madabhushi A, Zhong Y (2006) Breast cancer diagnosis using neural-based linear fusion strategies. In: Proceedings of the 13th international conference on neural information processing, Hong Kong. LNCS, vol 4234, pp 165–175

    Google Scholar 

  45. Wu Y, Cai S, Yang S, Zheng F, Xiang N (2013) Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability decision criterion. Entropy 15(4):1375–1387

    Article  MathSciNet  Google Scholar 

  46. Yang S, Cai S, Zheng F, Wu Y, Liu K, Wu M, Zou Q, Chen J (2014) Representation of fluctuation features in pathologicalknee joint vibroarthrographic signals using kernel density modeling method. Med Eng Phys 36(10):1305–1311

    Article  Google Scholar 

  47. Yang S, Zheng F, Luo X, Cai S, Wu Y, Liu K, Wu M, Chen J, Krishnan S (2014) Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with Parkinson’s disease. PLoS One 9(2):e88825

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Wu, Y. (2015). Feature Computing and Signal Classifications. In: Knee Joint Vibroarthrographic Signal Processing and Analysis. SpringerBriefs in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44284-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44284-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44283-8

  • Online ISBN: 978-3-662-44284-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics