Skip to main content

Signal Acquisition and Preprocessing

  • Chapter
  • First Online:
Book cover Knee Joint Vibroarthrographic Signal Processing and Analysis

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

Abstract

This chapter describes the detailed settings of the knee joint vibroarthrographic signal acquisition system. The text also presents a cascade moving average filter method to estimate the baseline wander in the raw signal, along with the combination of the ensemble empirical mode decomposition and detrended fluctuation analysis algorithms to remove the random noise. The filtering techniques for reduction of muscle contraction interference are also reviewed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1∕f noise. Phys Rev Lett 59:381–384

    Article  MathSciNet  Google Scholar 

  2. Cai S, Wu Y, Xiang N, Zhong Z, He J, Shi L, Xu F (2012) Detrending knee joint vibration signals with a cascade moving average filter. In: Proceedings of the 34th annual international conference of IEEE engineering in medicine and biology society, San Diego, pp 4357–4360

    Google Scholar 

  3. Cai S, Yang S, Zheng F, Lu M, Wu Y, Krishnan S (2013) Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Comput Math Methods Med 2013:Article ID 904267

    Google Scholar 

  4. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  MATH  MathSciNet  Google Scholar 

  5. Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31(1):417–457

    Article  MathSciNet  Google Scholar 

  6. Huang NE, Wu MLC, Long SR, Shen SSP, Qu W, Gloersen P, Fan KL (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond Ser A: Math, Phys Eng Sci 459(2037):2317–2345

    Article  MathSciNet  Google Scholar 

  7. Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295(3):441–454

    Article  MATH  Google Scholar 

  8. Kim KS, Seo JH, Kang JU, Song CG (2009) An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput Methods Programs Biomed 94(2):198–206

    Article  Google Scholar 

  9. Krishnan S, Rangayyan RM (2000) Automatic de-noising of knee-joint vibration signals using adaptive time-frequency representations. Med Biol Eng Comput 38(8):2–8

    Article  Google Scholar 

  10. Krishnan S, Rangayyan RM, Bell GD, Frank CB, Ladly KO (1997) Adaptive filtering, modelling, and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology. Med Biol Eng Comput 35(6):677–684

    Article  Google Scholar 

  11. Lu M, Cai S, Zheng F, Yang S, Xiang N, Wu Y (2012) Adaptive noise removal of knee joint vibration signals using a signal power error minimization method. In: Proceedings of the 7th international conference on computing and convergence technology, Seoul, pp 1193–1196

    Google Scholar 

  12. Moussavi ZMK, Rangayyan RM, Bell GD, Frank CB, Ladly KO, Zhang YT (1996) Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Trans Biomed Eng 43(1):15–23

    Article  Google Scholar 

  13. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170

    Article  Google Scholar 

  14. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

    Article  Google Scholar 

  15. Rangayyan RM (2002) Biomedical signal analysis: a case-study approach. IEEE/Wiley, New York

    Google Scholar 

  16. Rangayyan RM, Wu YF (2008) Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med Biol Eng Comput 46(3):223–232

    Article  Google Scholar 

  17. Rangayyan RM, Wu Y (2009) Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann Biomed Eng 37(1):156–163

    Article  Google Scholar 

  18. Rangayyan RM, Wu Y (2010) Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Biomed Signal Process Control 5(1):53–58

    Article  Google Scholar 

  19. Rangayyan RM, Krishnan S, Bell GD, Frank CB, Ladly KO (1997) Parametric representation and screening of knee joint vibroarthrographic signals. IEEE Trans Biomed Eng 44(11):1068–1074

    Article  Google Scholar 

  20. Rangayyan RM, Oloumi F, Wu Y, Cai S (2013) Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed Signal Process Control 8(1):26–29

    Article  Google Scholar 

  21. Reddy NP, Rothschild BM, Mandal M, Gupta V, Suryanarayanan S (1995) Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Ann Biomed Eng 23(1):78–84

    Article  Google Scholar 

  22. Reddy NP, Rothschild BM, Verrall E, Joshi A (2001) Noninvasive measurement of acceleration at the knee joint in patients with rheumatoid arthritis and spondyloarthropathy of the knee. Ann Biomed Eng 29(12):1106–1111

    Article  Google Scholar 

  23. Rilling G, Flandrin P (2008) One or two frequencies? The empirical mode decomposition answers. IEEE Trans Signal Process 56(1):85–95

    Article  MathSciNet  Google Scholar 

  24. Shen YP, Rangayyan RM, Bell GD, Frank CB, Zhang YT, Ladly KO (1995) Localization of knee joint cartilage pathology by multichannel vibroarthrography. Med Eng Phys 17(8):583–594

    Article  Google Scholar 

  25. Tanaka N, Hoshiyama M (2012) Vibroarthrography in patients with knee arthropathy. J Back Musculoskelet Rehabil 25(2):117–122

    Google Scholar 

  26. Wu ZH, Huang NE (2004) A study of the characteristics of white noise using the empirical mode decomposition method. Proce R Soc Lond Ser A: Math, Phys Eng Sci 460(2046):1597–1611

    Article  Google Scholar 

  27. Wu ZH, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41

    Article  Google Scholar 

  28. Wu Y, Krishnan S (2011) Combining least-squares support vector machines for classification of biomedical signals: a case study with knee-joint vibroarthrographic signals. J Exp Theor Artif Intell 23(1):63–77

    Article  Google Scholar 

  29. Wu Y, Rangayyan RM (2009) An unbiased linear adaptive filter with normalized coefficients for the removal of noise in electrocardiographic signals. Int J Cogn Inform Nat Intell 3(4):73–90

    Article  Google Scholar 

  30. Wu Y, Rangayyan RM (2011) Noise Cancellation in ECG Signals with an Unbiased Adaptive Filter. In: Wang YX (ed) Transdisciplinary advancements in cognitive mechanisms and human information processing. IGI Global, Hershey, pp 348–366

    Chapter  Google Scholar 

  31. Wu Y, Rangayyan RM, Zhou Y, Ng SC (2009) Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Med Eng Phy 31(1):17–26

    Article  Google Scholar 

  32. Wu Y, Krishnan S, Rangayyan RM (2010) Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: a review. Crit Rev Biomed Eng 38(2):201–224

    Article  Google Scholar 

  33. Wu Y, Cai S, Xu F, Shi L, Krishnan S (2012) Chondromalacia patellae detection by analysis of intrinsic mode functions in knee joint vibration signals. In: IFMBE proceedings of 2012 world congress on medical physics and biomedical engineering, Beijing, vol 39, pp 493–496

    Google Scholar 

  34. Wu Y, Cai S, Yang S, Zheng F, Xiang N (2013b) Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability decision criterion. Entropy 15(4):1375–1387

    Article  MathSciNet  Google Scholar 

  35. Wu Y, Yang S, Zheng F, Cai S, Lu M, Wu M (2014) Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiol Meas 35(3):429–439

    Article  Google Scholar 

  36. Zhang YT, Frank CB, Rangayyan RM, Bell GD, Ladly KO (1991) Step size optimization of nonstationary adaptive filtering for knee sound analysis. Med Biol Eng Comput 29(Suppl 2):836

    Google Scholar 

  37. Zhang YT, Frank CB, Rangayyan RM, Bell GD (1992) A comparative study of vibromyography and electromyography obtained simultaneously from active human quadriceps. IEEE Trans Biomed Eng 39(10):1045–1052

    Article  Google Scholar 

  38. Zhang YT, Frank CB, Rangayyan RM, Bell GD (1992) Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement. IEEE Trans Biomed Eng 39(9):971–979

    Article  Google Scholar 

  39. Zhang YT, Rangayyan RM, Frank CB, Bell GD (1994) Adaptive cancellation of muscle contraction interference from knee joint vibration signals. IEEE Trans Biomed Eng 41(2):181–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Wu, Y. (2015). Signal Acquisition and Preprocessing. In: Knee Joint Vibroarthrographic Signal Processing and Analysis. SpringerBriefs in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44284-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44284-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44283-8

  • Online ISBN: 978-3-662-44284-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics