Skip to main content

Reactive Oxygen/Nitrogen Species and Antioxidant Defenses in Lotus japonicus

  • Chapter
  • First Online:
The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Reactive oxygen/nitrogen species (ROS/RNS) are potentially cytotoxic molecules because they can generate oxidative/nitrosative stress. However, ROS and RNS, at concentrations tightly regulated by antioxidants, also serve useful purposes in processes such as organ development, abiotic and biotic stress response, and redox signaling. Antioxidant enzymes and metabolites are abundant in plants and particularly in legume nodules. Most of the enzymes involved in antioxidant defense are encoded by multigene families and occur as multiple isoforms in various cellular compartments, forming a dynamic network that is spatiotemporally regulated. Genomic, transcriptomic, and proteomic analyses of model legumes, such as Lotus japonicus and Medicago truncatula, are unveiling a complex regulation of antioxidant pathways in different tissues and especially during the symbiotic interaction with rhizobia. This regulation includes alternatively spliced forms of the genes and post-translational modifications of the proteins, which with no doubt will be the subject of intense research over the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becana M, Klucas RV (1992) Transition metals in legume root nodules. Iron dependent free radical production increases during nodule senescence. Proc Natl Acad Sci USA 89:8958–8962

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    Article  PubMed  CAS  Google Scholar 

  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bustos-Sanmamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M (2011) Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol 189:765–776

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas L, Martínez A, Sánchez F, Quinto C (2008) Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). Plant J 56:802–813

    Article  PubMed  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  PubMed  CAS  Google Scholar 

  • Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Hanus FJ, Russell SA, Evans HJ (1987) Purification, properties, and distribution of ascorbate peroxidase in legume roots nodules. Plant Physiol 83:789–794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Espunya MC, De Michele R, Gómez-Cadenas A, Martínez MC (2012) S-nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Exp Bot 63:3219–3227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219

    Article  CAS  Google Scholar 

  • Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R (2007) Plant hemoglobins: what we know six decades after their discovery? Gene 398:78–85

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU (2011) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Physiol Biochem 46:371–379

    Article  PubMed  CAS  Google Scholar 

  • Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol Biol 47:677–692

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Eklund H, Rouhier N, Schürmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343

    Article  PubMed  CAS  Google Scholar 

  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213–1221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lucas MM, Van de Sype G, Hérouart D, Hernández MJ, Puppo A, de Felipe MR (1998) Immunolocalization of ferritin in determinate and indeterminate legume root nodules. Protoplasma 204:61–70

    Article  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M (2003) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol Plant Microbe Interact 16:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ (2007) The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153:411–419

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker FA, Desbois A, Abián J, Becana M (2012) Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA 109:2660–2665

    Article  PubMed  PubMed Central  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701

    Article  PubMed  CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramos J, Naya L, Gay M, Abián J, Becana M (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol 148:536–545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M (2009) The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. New Phytol 181:103–114

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Jacquot JP (2005) The plant multigenic family of thiol peroxidases. Free Radic Biol Med 38:1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutase and hydrogen peroxide in legume root nodules. Mol Plant Microbe Interact 17:1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Rubio MC, Becana M, Sato S, James EK, Tabata S, Spaink HP (2007) Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. Mol Plant Microbe Interact 20:262–275

    Article  PubMed  CAS  Google Scholar 

  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Plain View, New York, pp 343–406

    Google Scholar 

  • Spínola MC, Pérez-Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, González M, Cejudo FJ (2008) NTRC new ways of using NADPH in the chloroplast. Physiol Plant 133:516–524

    Article  PubMed  Google Scholar 

  • Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M (2011) Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus. Plant Physiol 156:1535–1547

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieweg MF, Hohnjec N, Küster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220:757–766

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our friend and colleague Shusei Sato for invaluable help in identifying CDS for Table 13.1. Research of our laboratory was funded by the Ministry of Economy and Competitivity (grants AGL2008-01298 and AGL2011-24524, cofunded by Fondo Europeo de Desarrollo Regional), and by Gobierno de Aragón (group A53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Becana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becana, M., Matamoros, M.A., Ramos, J., Rubio, M.C., Sainz, M. (2014). Reactive Oxygen/Nitrogen Species and Antioxidant Defenses in Lotus japonicus . In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_13

Download citation

Publish with us

Policies and ethics