Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

  • 1743 Accesses

Abstract

Neoclassically driven tearing modes (NTM) are a major problem for tokamaks operating in a conventional ELMy H-mode scenario. Depending on the mode numbers these pressure driven perturbations cause a mild to strong reduction in the plasma pressure, thus limiting the maximum achievable normalized plasma pressure \(\beta_N = \beta_t /(\frac{I_p}{a B_t})\) , or can even lead to disruptions at low edge safety factor, \(q_ {95}\). A control of such modes in high \(\beta_N\) plasmas is therefore of vital interest for tokamaks. The control consists of two major approaches, namely the avoidance of the excitation of these modes and the removal, or at least mitigation of the impact of these modes, if the avoidance did not succeed. For both routes examples will be given and the applicability of these approaches to ITER will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \( a_{i} \): numerical constants of the order of unity; \( \upvarepsilon = r_{res} /R_{0} \): inverse aspect ratio of the resonant surface; \( R_{0} \): major radius of the geometric axis of the resonant surface.

  2. 2.

    \( R_{0} \) = major plasma radius.

References

  1. F. Troyon, R. Gruber, H. Saurenman, S. Semenzato, S. Succi, Plasma Phys. Control. Fusion 26, 209 (1984)

    Google Scholar 

  2. F. Troyon, A. Roy, W.A. Cooper, F. Yassen, A. Turnbull, Plasma Phys. Control. Fusion 30, 1597 (1988)

    Google Scholar 

  3. J. Wesson, Tokamas, 3rd edition (Clarendon Press, Oxford, 2004)

    Google Scholar 

  4. H.P. Furth, P.H. Rutherford, H. Selberg, Phys. Fluids 16, 1054 (1973)

    Article  ADS  Google Scholar 

  5. R.H. Rutherford, Phys. Fluids 16, 1903 (1973)

    Article  ADS  Google Scholar 

  6. G. Bateman, MHD Instabilities (MIT Press, Cambridge Mass, 1978)

    Google Scholar 

  7. H. Zohm et al., Nucl. Fusion 41, 197 (2001)

    Article  ADS  Google Scholar 

  8. H. Zohm et al., Phys. Plasmas 8, 2009 (2001)

    Article  ADS  Google Scholar 

  9. J. Stober et al., Plasma Phys. Control. Fusion 43, 39 (2001)

    Article  ADS  Google Scholar 

  10. O. Sauter, C. Angioni, Y.R. Lin-Liu, Phys. Plasmas 6, 2834 (1999)

    Article  ADS  Google Scholar 

  11. M. Maraschek, O. Sauter, S. Günter, H. Zohm, ASDEX Upgrade Team, Plasma Phys. Control. Fusion 45, 1369 (2003)

    Article  ADS  Google Scholar 

  12. R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Poli, A.G. Peeters, A. Bergmann, S. Günter, S.D. Pinches, Phys. Rev. Lett. 88, 075001 (2002)

    Article  ADS  Google Scholar 

  14. A. Bergmann, E. Poli, A.G. Peeters, Monte carlo δ f simulations of neoclassical phenomena in tokamak plasmas, in Proceedings of the 19th IAEA Conference, Fusion Energy, Lyon, France, October 2002, (CD-ROM), pages IAEA–CN–94/TH/P1–01. (IAEA, Vienna, 2002)

    Google Scholar 

  15. A.H. Glasser, J.M. Greene, J.L. Johnson, Phys. Fluids 18, 875 (1975)

    Article  ADS  Google Scholar 

  16. A.H. Glasser, J.M. Greene, J.L. Johnson, Phys. Fluids 19, 567 (1976)

    Article  ADS  Google Scholar 

  17. M. Kotschenreuther, R.D. Hazeltine, P.J. Morrison, Phys. Plasmas 28, 294 (1985)

    MATH  Google Scholar 

  18. H. Lütjens, J.-F. Luciani, X. Garbet, Phys. Plasmas 8, 4267 (2001)

    Article  ADS  Google Scholar 

  19. H.R. Wilson, J.W. Connor, R.J. Hastie, C.C. Hegna, Phys. Plasmas 3, 248 (1996)

    Article  ADS  Google Scholar 

  20. H.R. Wilson et al., Plasma Phys. Control. Fusion 38, 149 (1996)

    Article  ADS  Google Scholar 

  21. F.L. Waelbroeck, R. Fitzpatrick, Phys. Rev. Lett. 78, 1703 (1997)

    Article  ADS  Google Scholar 

  22. J.W. Connor, F.L. Waelbroeck, H.R. Wilson, Phys. Plasmas 8, 2835 (2001)

    Article  ADS  Google Scholar 

  23. E. Poli, A. Bergmann, A.G. Peeters, Phys. Rev. Lett. 94, 205001 (2005)

    Article  ADS  Google Scholar 

  24. E. Poli, A. Bergmann, A.G. Peeters, L.C. Appel, S.D. Pinches, Nucl. Fusion 45, 384 (2005)

    Article  ADS  Google Scholar 

  25. M. Siccinio, E. Poli, F.J. Casson, W.A. Hornsby, A.G. Peeters, Phys. Plasmas 18, 122506 (2011)

    Article  ADS  Google Scholar 

  26. O. Sauter et al., Plasma Phys. Control. Fusion 44, 1999 (2002)

    Article  ADS  Google Scholar 

  27. R.J. Buttery et al., Nucl. Fusion 43, 69 (2003)

    Article  ADS  Google Scholar 

  28. M.E. Maraschek et al., Density dependence of the onset of neoclassical tearing modes in H-mode and pellet refuelled discharges on JET and ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira 2001), ed. by C. Silva, C. Varandas, D. Campbell, vol. 25A. (EPS, Geneva, 2001), pp. 1801–1804

    Google Scholar 

  29. M. Maraschek, Nucl. Fusion 52, 074007 (2012)

    Article  ADS  Google Scholar 

  30. O. Sauter et al., Phys. Plasmas 4, 1654 (1997)

    Article  ADS  Google Scholar 

  31. H. Zohm, Phys. Plasmas 4, 3433 (1997)

    Article  ADS  Google Scholar 

  32. O. Sauter, M. Henderson, G. Ramponi, H. Zohm, C. Zucca, Plasma Phys. Control. Fusion 52, 025002 (17 pp) (2010)

    Google Scholar 

  33. S. Günter et al., Nucl. Fusion 44, 524 (2004)

    Article  ADS  Google Scholar 

  34. A. Gude, M. Maraschek, H. Zohm, ASDEX Upgrade Team, Nucl. Fusion 42, 833 (2002)

    Article  ADS  Google Scholar 

  35. S. Günter et al., Phys. Rev. Lett. 87, 275001 (2001)

    Article  Google Scholar 

  36. A.W. Morris, Plasma Phys. Control. Fusion 34, 1871 (1992)

    Article  ADS  Google Scholar 

  37. G. Giruzzi et al., Nucl. Fusion 39, 107 (1999)

    Article  ADS  Google Scholar 

  38. L. Urso et al., Nucl. Fusion 50, 025010 (12 pp) (2010)

    Google Scholar 

  39. H. Zohm et al., J. Phys: Conf. Ser. 25, 234 (2005)

    ADS  Google Scholar 

  40. A. Isayama et al., Nucl. Fusion 49, 055006 (9 pp) (2009)

    Google Scholar 

  41. C.C. Petty et al., Nucl. Fusion 44, 243 (2004)

    Article  ADS  Google Scholar 

  42. R.L. Haye et al., Nucl. Fusion 46, 451 (2006)

    Article  ADS  Google Scholar 

  43. H. Zohm et al., Plasma Phys. Control. Fusion 49, B341 (2007)

    Article  ADS  Google Scholar 

  44. A. Isayama, The JT60 Team, Nucl. Fusion 47, 773 (2007)

    Google Scholar 

  45. N. Bertelli, D. De Lazzari, E. Westerhof, Nucl. Fusion 51, 103007 (15 pp) (2011)

    Google Scholar 

  46. O. Sauter et al., Phys. Rev. Lett. 88, 105001 (2002)

    Article  ADS  Google Scholar 

  47. I.T. Chapman et al., Plasma Phys. Control. Fusion 55, 065009 (2013)

    Article  ADS  Google Scholar 

  48. M. Maraschek et al., Phys. Rev. Lett. 98, 025005 (2007)

    Article  ADS  Google Scholar 

  49. E. Poli, G.V. Pereverzev, A.G. Peeters, Phys. Plasmas 6, 5 (1999)

    Article  ADS  Google Scholar 

  50. E. Poli, A.G. Peeters, G.V. Pereverzev, Comput. Phys. Comm. 136, 90 (2001)

    Article  ADS  MATH  Google Scholar 

  51. E. Poli, G.V. Pereverzev, A.G. Peeters, M. Bornatici, Fusion Eng. Design 53, 9 (2001)

    Article  Google Scholar 

  52. K. Matsuda, IEEE Trans. Plasma Scien. 17, 6 (1989)

    Article  ADS  Google Scholar 

  53. A. Isayama et al., Plasma Phys. Control. Fusion 42, 37 (2000)

    Article  ADS  Google Scholar 

  54. A. Isayama et al., Nucl. Fusion 43, 1272 (2003)

    Article  ADS  Google Scholar 

  55. C.C. Hegna, J.D. Callen, Phys. Plasmas 4, 2940 (1997)

    Article  ADS  Google Scholar 

  56. F.A.G. Volpe et al., Phys. Plasmas 16, 102502 (2009)

    Article  ADS  Google Scholar 

  57. Y.I. Koshuriinov, V.G. Pavel’el, M.I. Petelin, I.V. Turchin, D.Y. Shchegol’kov, Tech. Phys. Lett. 31, 709 (2005)

    Article  Google Scholar 

  58. W.A. Bongers et al., ECE system on ASDEX-Upgrade placed inline at the high power waveguide based transmission system, in 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves. (Busan, South Korea, 2009), pp. 590–591. http://www.tue.nl/en/publication/ep/p/d/233286/ or http://repository.tue.nl/664989 or http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5325585

  59. V. Erckmann et al., Fusion Sci. Technol. 55, 23 (2009)

    Google Scholar 

  60. Q. Yu, X.D. Zhang, S. Günter, Phys. Plasmas 11, 1960 (2004)

    Article  ADS  Google Scholar 

  61. J.P. Graves, I.T. Chapman, S. Coda, L.G. Erikson, T. Johnson, Phys. Rev. Lett. 102, 065005 (2009)

    Article  ADS  Google Scholar 

  62. J.P. Graves et al., Nucl. Fusion 50, 052002 (6 pp) (2010)

    Google Scholar 

  63. C.D. Warrick et al., Phys. Rev. Lett. 85, 574 (2001)

    Article  ADS  Google Scholar 

  64. C.D. Warrick et al., Neo-classical tearing mode stabilisation and onset mechanisms in COMPASS-D, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira 2001), ed. by C. Silva, C. Varandas, D. Campbell, vol. 25A. (EPS, Geneva, 2001), pp. 1817–1820

    Google Scholar 

  65. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  66. W. Suttrop et al., Design of in-vessel saddle coils for MHD control in ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, Crete, 2008), ed. by P. Lalousis, S. Moustaizis, vol. 32D. (EPS, Geneva, 2008), p. P–4.075

    Google Scholar 

  67. W. Suttrop et al., Fusion Eng. Des. 84, 290 (2009)

    Article  Google Scholar 

  68. W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011)

    Article  ADS  Google Scholar 

  69. M. Maraschek et al., Measurement and impact of the n = 1 intrinsic error field at ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, Finland, 2013), ed. by V. Naulin et al., vol. 37D of ECA. (European Physical Society, Geneva, 2013), p. P4.127

    Google Scholar 

  70. S. Cirrant et al., Mode coupling trigger of tearing modes in ECW heated discharges in FTU, in Fusion Energy 2000 (Proceedings 18th International Conference, Sorrento, Italy, 2000), vol. IAEA-CSP-8/C, CD-ROM file EX/3-3. (IAEA, Vienna, 2001) http://www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node1.htm

  71. N. Hicks et al., Fusion Sci. Technol. 57, 1 (2010)

    Google Scholar 

  72. D.A. Humphreys et al., Phys. Plasmas 13, 056113 (9p) (2006)

    Google Scholar 

  73. M. Reich et al., Progress on ECCD-based NTM rt-control at ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceeding of the 38th EPS Conference on Plasma Physics, Strasbourg, France, 2011), ed. by C. McKenna, vol. 34A of ECA. (European Physical Society, Geneva, 2011), p. P5.102

    Google Scholar 

  74. M. Reich et al., ECCD-based NTM control using the ASDEX upgrade real-time system, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, Ireland, 2010), ed. by C. McKenna, vol. 34A of ECA. (European Physical Society, Geneva, 2010), p. P2.189

    Google Scholar 

  75. M. Reich et al., Fusion Sci. Technol. 58, 727 (2010)

    Google Scholar 

  76. L. Giannone et al., Fusion Eng. Des. 84, 825 (2009)

    Article  Google Scholar 

  77. M. Reich et al., Real-time current profile measurements for NTM control, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 36th EPS Conference on Plasma Physics, Sofia, Bulgaria, 2009), ed. by M. Mateev, E. Benova, vol. 33E of ECA. (European Physical Society, Geneva, 2009), p. P–1.160

    Google Scholar 

  78. M.R. de Baar et al., Physics and real time control of tearing modes in TEXTOR, in Fusion Energy 2008 (Proceedings 22nd International Conference, Geneva, Swizerland, 2008), vol. IAEA-CN-165, CD-ROM file EX/P9-12. (IAEA, Vienna, 2008) http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/html/index.htm

  79. B.A. Hennen et al., Nucl. Fusion 52, 104006 (2010)

    Google Scholar 

  80. H. Zohm et al., Nucl. Fusion 39, 577 (1999)

    Article  ADS  Google Scholar 

  81. Q. Yu, S. Günter, Modelling of the neo-classical tearing mode and its stabilisation by ECCD/ECRH, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 1998 ICPP & 25th EPS Conference on Controlled Fusion and Plasma Physics, Praha, 1998), ed. by P. Pavlo, vol. 22C. (EPS, Petit-Lancy, 1998), pp. 1899–1902

    Google Scholar 

  82. Q. Yu, S. Günter, Plasma Phys. Control. Fusion 40, 1977 (1998)

    Article  ADS  Google Scholar 

  83. Q. Yu, S. Günter, G. Giruzzi, K. Lackner, M. Zabiego, Phys. Plasmas 7, 312 (2000)

    Article  ADS  Google Scholar 

  84. G. Gantenbein et al., Phys. Rev. Lett. 85, 1242 (2000)

    Article  ADS  Google Scholar 

  85. G. Gantenbein et al., Investigations on m = 2, n = 1 tearing mode stabilisation with ECRH at ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Procedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003), ed. by R. Koch, S. Lebedev, vol. 27A. (EPS, Geneva, 2003), p. P–1.187

    Google Scholar 

  86. H. Zohm et al., Plasma Phys. Control. Fusion 39, B237 (1997)

    Article  Google Scholar 

  87. B. Esposito et al., Nucl. Fusion 51, 083051 (2011)

    Article  ADS  Google Scholar 

  88. M. Maraschek, S. Günter, H. Zohm, ASDEX Upgrade Team, Plasma Phys. Control. Fusion 41, 1 (1999)

    Article  ADS  Google Scholar 

  89. B. Esposito et al., Nucl. Fusion 49, 065014 (2009)

    Article  ADS  Google Scholar 

  90. F.A.G. Volpe et al., Stabilization of disruptive locked modes at DIII-D by means of ECCD and magnetic perturbations, in 15th workshop on MHD stability control: US-Japan Workshop on 3D Magnetic Field Effects in MHD Control, Madison (WI), USA, Nov. 2010. (2010) https://fusion.gat.com/conferences/mhd10/talks/Volpe_Wednesday.pdf or https://fusion.gat.com/conferences/mhd10/talks.php

  91. F. Volpe, R.J. La Haye, Private communication, University of Madison (WI), USA and General Atomics, San Diego (CA), USA (2011)

    Google Scholar 

  92. K. Nagasaki et al., Nucl. Fusion 43, 7 (2003)

    Article  ADS  Google Scholar 

  93. K. Nagasaki et al., Nucl. Fusion 45, 1608 (2005)

    Article  ADS  Google Scholar 

  94. R.J. La Haye et al., Nucl. Fusion 45, 37 (2005)

    Article  Google Scholar 

  95. R. Prater et al., Nucl. Fusion 47, 371 (2007)

    Article  ADS  Google Scholar 

  96. M. Maraschek, O. Sauter, S. Günter, H. Zohm, ASDEX Upgrade Team, Scaling of the marginal β p of neoclassical tearing modes during power ramp-down experiments in ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003), ed. by R. Koch, S. Lebedev, vol. 27A. (EPS, Geneva, 2003), p. P–1.120

    Google Scholar 

  97. J. Stober et al., Nucl. Fusion 41, 1535 (2001)

    Article  ADS  Google Scholar 

  98. C. Angioni et al., Phys. Plasmas 12, 040701 (2005)

    Article  ADS  Google Scholar 

  99. A. Mlynek et al., Nucl. Fusion 51, 043002 (2011)

    Article  ADS  Google Scholar 

  100. A. Isayama, The JT60 Team, Phys. Plasmas 12, 056117 (10 pp) (2005)

    Google Scholar 

  101. T. Suzuki et al., Nucl. Fusion 48, 045002 (9 pp) (2008)

    Google Scholar 

  102. E. Westerhof et al., Nucl. Fusion 42, 1324 (2002)

    Article  ADS  Google Scholar 

  103. C. Angioni, T.P. Goodman, M.A. Henderson, O. Sauter, Nucl. Fusion 43, 455 (2003)

    Article  ADS  Google Scholar 

  104. H. Zohm et al., Nucl. Fusion 43, 1570 (2003)

    Article  ADS  Google Scholar 

  105. A. Mück et al., Plasma Phys. Control. Fusion 47, 1633 (2005)

    Article  ADS  Google Scholar 

  106. H. Zohm et al., Plasma Phys. Control. Fusion 45, A163 (2003)

    Article  ADS  Google Scholar 

  107. T.P. Goodman, F. Felici, O. Sauter, J.P. Graves, The TCV Team, Phys. Rev. Lett. 106, 245002 (2011)

    Article  ADS  Google Scholar 

  108. G. Witvoet, M. Lauret, M.R. de Baar, E. Westerhof, M. Steinbuch, Nucl. Fusion 51, 103043 (15 pp) (2011)

    Google Scholar 

  109. M. Lauret et al., Nucl. Fusion 52, 062002 (2012)

    Google Scholar 

  110. I.T. Chapman et al., Phys. Plasmas 16, 072506 (2009)

    Article  ADS  Google Scholar 

  111. V. Igochine et al., Plasma Phys. Control. Fusion 53, 022002 (2011)

    Article  ADS  Google Scholar 

  112. I.T. Chapman, Nucl. Fusion 53, 013001 (36 pp) (2011)

    Google Scholar 

  113. A. Gude, S. Günter, S. Sesnic, ASDEX Upgrade Team, Nucl. Fusion 39, 127 (1999)

    Article  ADS  Google Scholar 

  114. S. Fietz et al., Plasma Phys. Control. Fusion 55, 085010 (2013)

    Article  ADS  Google Scholar 

  115. O. Gruber et al., Plasma Phys. Control. Fusion 47, 135 (2005)

    Article  Google Scholar 

  116. A. Stäbler et al., Nucl. Fusion 45, 617 (2005)

    Article  ADS  Google Scholar 

  117. J. Stober et al., Nucl. Fusion 47, 728 (2007)

    Article  ADS  Google Scholar 

  118. T. Luce et al., Development of advanced inductive scenarios for ITER, in Fusion Energy 2010 (Proceedings of 23rd International Conference, Daejon, Korea Rep., 2010), vol. IAEA-CN-180, CD-ROM file ITR/1-5. (IAEA, Vienna, 2010) http://www-naweb.iaea.org/napc/physics/FEC/FEC2010/html/index.htm or http://www-pub.iaea.org/iaeameetings/38091/23rd-IAEA-Fusion-Energy-Conference

  119. M.R. Wade et al., Nucl. Fusion 45, 407 (2005)

    Article  ADS  Google Scholar 

  120. C.C. Petty et al., Phys. Rev. Lett. 102, 045005 (2009)

    Article  ADS  Google Scholar 

  121. E. Joffrin et al., Nucl. Fusion 45, 626 (2005)

    Article  ADS  Google Scholar 

  122. A.C.C. Sips et al., Nucl. Fusion 47, 1485 (2007)

    Article  ADS  Google Scholar 

  123. W. Treutterer et al., Fusion Eng. Des. 86, 465 (2011)

    Article  Google Scholar 

  124. O. Sauter, H. Zohm, Partial stabilisation of NTMs with ECCD for standard scenarios in ITER, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 32nd EPS Conference on Plasma Physics, Tarragona, 2005), ed. by C. Hidalgo, B.P. van Milligen, vol. 29C. (EPS, Geneva, 2005), p. P–2.059

    Google Scholar 

  125. O. Sauter, M. Henderson, H. Zohm, C. Zucca, Partial stabilization and control of neoclassical tearing modes in burning plasmas, in Fusion Energy 2006 (Proceedings of 21st International Conference, Chengdu, China, 2006), vol. IAEA-CN-149, CD-ROM file TH/P3-10. (IAEA, Vienna, 2006) http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm

  126. M. Shimada et al., Progress in the ITER physics basis chapter 1: Overview and summary, Nucl. Fusion 47, S1 (2007)

    Google Scholar 

  127. M. Henderson et al., Nucl. Fusion 48, 054013 (14 pp) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Maraschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maraschek, M. (2015). Neoclassical Tearing Mode (NTM). In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics