Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

Abstract

The advanced tokamak regime is a promising candidate for steady state tokamak operation, desirable for a fusion reactor. This regime is characterized by a high bootstrap current fraction and a flat or reversed safety factor profile, which leads to operation close to the pressure limit (see Chap. 2). At this limit, an external ideal kink mode becomes unstable. This external kink is converted into the slowly growing Resistive Wall Mode (RWM) by the presence of a conducting wall. Reduction of the growth rate allows one to act on the mode and to stabilize it. There are two main factors which determine the stability of the RWM. The first factor comes from external magnetic perturbations (error fields, resistive wall, feedback coils, etc.). This part of RWM physics is the same for tokamaks and reversed field pinch (RFP) configurations. The physics of this interaction is relatively well understood, since it is based on classical electrodynamics, and is used for RWM control with external coils. The second ingredient of RWM physics is the interaction of the mode with plasma flow and fast particles. These interactions are particularly important for tokamaks, which have higher plasma flow and stronger trapped particle effects compared to the present day reversed field pinch device. The influence of the fast particles will also be increasingly more important in ITER and DEMO, which will have a large fraction of fusion born alpha particles. These interactions have kinetic origins that make the computations challenging. Correct prediction of the “plasma-RWM” interaction is an important ingredient which has to be combined with the influence of external fields (resistive wall, error fields and feedback) to make reliable predictions for RWM control in a future reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other variant of simple RWM representation is nicely given in chapter 3 (subsection 3.3.1.2.1) of the book “Fusion Physics”, Ed. M. Kikuchi et al., IAEA VIENNA, 2012, (this book is freely available online http://www-pub.iaea.org/books/iaeabooks/8879/Fusion-Physics).

  2. 2.

    The dissipation considered here is the due to plasma-mode interaction, described by force \( \overrightarrow {\nabla } \cdot \vec{\varPi }_{1} \) in 6.22 and 6.23, which increases with β N .

  3. 3.

    Radial magnetic sensors can be used in the same way.

  4. 4.

    Measurements of RWM stability in the presence of a strong neutral beam torque required some form of “magnetic braking” to reduce the plasma rotation to the critical value. Two braking methods were used: (1) reduction of the current in the error correction coils, allowing the uncorrected part of the intrinsic error field to create a drag on the plasma rotation; (2) application of an additional nonaxisymmetric field with an external set of coils.

  5. 5.

    In practice, only the first bounce harmonics \( l \) are important. For \( l > \left| 4 \right| \) the resulting integral provides negligible changes of \( \delta W_{k} \).

References

  1. N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987)

    Article  ADS  Google Scholar 

  2. A.G. Peeters, Plasma Phys. Control. Fusion 42, B231 (2000)

    Article  ADS  Google Scholar 

  3. M.S. Chu, M. Okabayashi, Plasma Phys. Control. Fusion 52, 123001 (2010)

    Article  ADS  Google Scholar 

  4. A. Bondeson, D.J. Ward, Phys. Rev. Let. 72, 2709 (1994)

    Article  ADS  Google Scholar 

  5. H. Reimedes et al., Phys. Plasmas 13, 056107 (2006)

    Article  ADS  Google Scholar 

  6. J. Manickam et al., Phys. Plasmas 1, 1601 (1994)

    Article  ADS  Google Scholar 

  7. V. Igochine, Nucl. Fusion 52, 074010 (2012)

    Article  ADS  Google Scholar 

  8. A.M. Garofalo, Nucl. Fusion 40, 1491 (2000)

    Article  ADS  Google Scholar 

  9. E.J. Strait et al., in Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002) (Vienna: IAEA) CD-ROM file EX/S2-1 and, http://www-pub.iaea.org/MTCD/publications/PDF/csp_019c/html/node137.htm

  10. H. Reimerdes, Phys. Plasmas 13, 056107 (2006)

    Article  ADS  Google Scholar 

  11. M.S. Chu et al., Phys. Plasmas 2, 2236 (1995)

    Article  ADS  Google Scholar 

  12. R. Betti, J.P. Freidberg, Phys. Rev. Lett. 74, 2949 (1995)

    Article  ADS  Google Scholar 

  13. A.M. Garofalo et al., Phys. Rev. Lett. 82, 3811 (1999)

    Article  ADS  Google Scholar 

  14. A.M. Garofalo et al., Phys. Plasmas 10, 4776 (2003)

    Article  ADS  Google Scholar 

  15. M. Okabayashi, Plasma Phys. Control. Fusion 44, B339 (2002)

    Article  Google Scholar 

  16. A.M. Garofalo et al., Nucl. Fusion 42, 1335 (2002)

    Article  ADS  Google Scholar 

  17. S. Sabbagh et al., Nucl. Fusion 46, 635 (2006)

    Article  ADS  Google Scholar 

  18. A.J. Webster, Phys. Plasmas 17, 110708 (2010)

    Article  ADS  Google Scholar 

  19. L.E. Zakharov, Phys. Plasmas 15, 062507 (2008)

    Article  ADS  Google Scholar 

  20. M. Okabayashi, Nucl. Fusion 49, 125003 (2009)

    Article  ADS  Google Scholar 

  21. I.T. Chapman et al., Plasma Phys. Control. Fusion 51, 055015 (2009)

    Article  ADS  Google Scholar 

  22. A. Bondeson et al., Plasma Phys. Control. Fusion 45, A253 (2003)

    Article  ADS  Google Scholar 

  23. Y. Liu, Plasma Phys. Control. Fusion 51, 115006 (2009)

    Article  ADS  Google Scholar 

  24. M. Takechi et al., 37th EPS Conference on Plasma Physics, Dublin, Ireland, P2.192, http://ocs.ciemat.es/EPS2010PAP/html/author.html. Accessed 21–25 June 2010

  25. V.D. Pustovitov, M.S. Mayorova, Plasma Phys. Control. Fusion 48, 51 (2006)

    Article  ADS  Google Scholar 

  26. V.D. Pustovitov, Plasma Phys. Rep. 30, 187 (2004)

    Article  ADS  Google Scholar 

  27. A.H. Boozer, Phys. Rev. Let. 86, 5059 (2001)

    Article  ADS  Google Scholar 

  28. M. Okabayshi, N. Pomphrey, R.E. Hatcher, Nucl. Fusion 38, 1607 (1998)

    Article  ADS  Google Scholar 

  29. J.M. Finn, Phys. Plasmas 2, 198 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Fitzpatrick, Phys. Plasmas 9, 3459 (2002)

    Article  ADS  Google Scholar 

  31. S.C. Guo, Phys. Plasmas 6, 3868 (1999)

    Article  ADS  Google Scholar 

  32. D. Yadykin et al., Plasma Phys. Control. Fusion 53, 085024 (2011)

    Article  ADS  Google Scholar 

  33. M. Okabayashi et al., 36th EPS Conference on Plasma Physics, Sofia, Bulgaria, ECA Vol.33E, P-4.141 (2009) or CD-ROM file P4.141 http://epsppd.epfl.ch/Sofia/start.htm. Accessed 29 June–3 July 2009

  34. Y. In et al., Plasma Phys. Control. Fusion 52, 104004 (2010)

    Article  ADS  Google Scholar 

  35. Y. Liu et al., Phys. Plasmas 17, 072510 (2010)

    Article  ADS  Google Scholar 

  36. E.J. Strait et al., Nucl. Fusion 43, 430 (2003)

    Article  ADS  Google Scholar 

  37. Liu et al., Phys. Plasmas 7, 3681 (2000)

    Article  ADS  Google Scholar 

  38. A. Bondeson et al., Nucl. Fusion 41, 455 (2001)

    Article  ADS  Google Scholar 

  39. M. Okabayashi et al., Phys. Plasmas 8, 2071 (2001)

    Article  ADS  Google Scholar 

  40. V.D. Pustovitov, Plasma Phys. Control. Fusion 44, 295 (2002)

    Article  ADS  Google Scholar 

  41. C.M. Bishop, Plasma Phys. Control. Fusion 31, 1179 (1989)

    Article  ADS  Google Scholar 

  42. L. Piron et al., Plasma Phys. Control. Fusion 53, 084004 (2011)

    Article  ADS  Google Scholar 

  43. P.R. Brunsell et al., Phys. Rev. Lett. 93, 225001 (2004)

    Article  ADS  Google Scholar 

  44. P.R. Brunsell et al., Plasma Phys. Control. Fusion 47, B25 (2005)

    Article  Google Scholar 

  45. M. Cavinato et al., IEEE Transaction of nuclear science 53, 1015 (2006)

    Article  ADS  Google Scholar 

  46. P. Zanca et al., Nucl. Fusion 47, 1425 (2007)

    Article  ADS  Google Scholar 

  47. K.E.J. Olofsson et al., Plasma Phys. Control. Fusion 53, 084003 (2011)

    Article  ADS  Google Scholar 

  48. J.R. Drake, Nucl. Fusion 45, 557 (2005)

    Article  ADS  Google Scholar 

  49. K.E.J. Olofsson et al., Plasma Phys. Control. Fusion 52, 104005 (2010)

    Article  ADS  Google Scholar 

  50. V. Igochine, Plasma Phys. Control. Fusion 51, 055008 (2009)

    Article  ADS  Google Scholar 

  51. T. Bolzonella, Phys. Rev. Lett. 101, 165003 (2008)

    Article  ADS  Google Scholar 

  52. Y.Q. Liu, A. Bondeson, Phys. Rev. Lett. 84, 907 (2000)

    Article  ADS  Google Scholar 

  53. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  54. W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011)

    Article  ADS  Google Scholar 

  55. M. Okabayshi, et al., Nucl. Fusion 38, 1607 (1998)

    Google Scholar 

  56. V.D. Pustovitov, Plasma Phys. Rep. 27, 195 (2001)

    Google Scholar 

  57. V.D. Pustovitov, Phys. Plasmas. 15, 072501 (2008)

    Google Scholar 

  58. V.D. Pustovitov, Plasma Phys. Rep. 37, 35 (2011)

    Google Scholar 

  59. J. Bialek et al., Phys. Plasmas 8, 2170 (2001)

    Article  ADS  Google Scholar 

  60. P.Merkel et al., 2006 21st IAEA Fusion Energy Conf. 2006 (Chengdu, China)(Vienna: IAEA) TH/P3-8

    Google Scholar 

  61. E. Strumberger et al., Phys. Plasmas 15, 056110 (2008)

    Google Scholar 

  62. R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)

    Article  ADS  Google Scholar 

  63. A. Portone et al., Plasma Phys. Control. Fusion 50, 085004 (2008)

    Article  ADS  Google Scholar 

  64. F. Villone et al., Phys. Rev. Lett. 100, 255005 (2008)

    Article  ADS  Google Scholar 

  65. F. Villone et al., Nucl. Fusion 50, 125011 (2010)

    Article  ADS  Google Scholar 

  66. V.D. Pustovitov, Pl. Phys. Rep. 38, 697 (2012)

    Article  Google Scholar 

  67. F. Villone, V.D. Pustovitov, Phys. Lett. A 377, 2780 (2013)

    Article  ADS  Google Scholar 

  68. V.D. Pustovitov, Nucl. Fusion 53, 033001 (2013)

    Article  ADS  Google Scholar 

  69. V.D. Pustovitov, Phys. Plasmas 19, 062503 (2012)

    Article  ADS  Google Scholar 

  70. V.D. Pustovitov, Plasma Phys. Control. Fusion 50, 105001 (2008)

    Article  ADS  Google Scholar 

  71. Y. Liu, F. Villone, Plasma Phys. Control. Fusion 51, 115008 (2009)

    Article  ADS  Google Scholar 

  72. G.W. Hammet, F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)

    Article  ADS  Google Scholar 

  73. A. Bondeson, M.S. Chu, Phys. Plasmas 3, 3013 (1996)

    Article  ADS  Google Scholar 

  74. E.J. Strait et al., Phys. Plasmas 14, 056101 (2007)

    Article  ADS  Google Scholar 

  75. H. Reimerders et. al., Phys. Rev. Lett. 98, 055001 (2007)

    Google Scholar 

  76. M. Takechi et al., Phys. Rev. Lett. 98, 055002 (2007)

    Article  ADS  Google Scholar 

  77. S.A. Sabbagh et al., Phys. Rev. Lett. 97, 045004 (2006)

    Article  ADS  Google Scholar 

  78. S.W. Haney, J.P. Friedberg, Phys. Fluids B 1, 1637 (1989)

    Article  ADS  Google Scholar 

  79. B. Hu, R. Betti, Phys. Rev. Lett. 93, 105002 (2004)

    Article  ADS  Google Scholar 

  80. B. Hu et al., Phys. Plasmas 12, 057301 (2005)

    Article  ADS  Google Scholar 

  81. Y. Liu et al., Phys. Plasmas 15, 112503 (2008)

    Article  ADS  Google Scholar 

  82. B.N. Breizman et al., Phys. Plasmas 5, 2326 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  83. Y. Liu et al., Phys. Plasmas 15, 092505 (2008)

    Article  ADS  Google Scholar 

  84. H. Reimerdes et al., Phys. Rev. Lett. 106, 215002 (2011)

    Article  ADS  Google Scholar 

  85. S.A. Sabbagh et al., Nucl. Fusion 50, 025020 (2010)

    Article  ADS  Google Scholar 

  86. M. Shimada et al., Nucl. Fusion 47, S1 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  87. T.C. Hender et al., Nucl. Fusion 47, S128 (2007)

    Article  ADS  Google Scholar 

  88. C. Gormezano et al., Nucl. Fusion 47, S285 (2007)

    Article  ADS  Google Scholar 

  89. V. Mukhovatov et al., Nucl. Fusion 47, S404–S413 (2007)

    Article  ADS  Google Scholar 

  90. J. Garcia et al., Nucl. Fusion 48, 075007 (2008)

    Article  ADS  Google Scholar 

  91. W.M Stacey. in Front Matter, in Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion, 2nd edn. (Wiley, New York, 2010)

    Google Scholar 

  92. I.T. Chapman et al., Fusion Engin. and Design 86, 141 (2011)

    Article  Google Scholar 

  93. H. Zohm, Fusion Sci. Technol. 58, 613 (2010)

    Google Scholar 

  94. Y. Liu, Nucl. Fusion 49, 035004 (2009)

    Article  ADS  Google Scholar 

  95. A. Polevoi et all, in Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002) (Vienna: IAEA) CD-ROM file and http://www.iaea.org/programmes/ripc/physics/fec2002/html/fec2002.htm

  96. Y. Liu et all, in Fusion Energy 2010 (Proc. 23rd Int. Conf. Daejeon, 2010) (Vienna: IAEA) CD-ROM file [TH/P9-26] and, http://www-naweb.iaea.org/napc/physics/FEC/FEC2010/html/index.htm

  97. Y. Liu, Nucl. Fusion 50, 095008 (2010)

    Article  ADS  Google Scholar 

  98. I.T. Chapman et al., Phys. Plasmas 19, 052502 (2012)

    Article  ADS  Google Scholar 

  99. A.H. Reiman, D. Monticello, Phys. Fluids B 3, 2230 (1991)

    Article  ADS  Google Scholar 

  100. M.P. Gryaznevich et al., Plasma Phys. Control. Fusion 50, 124030 (2008)

    Article  ADS  Google Scholar 

  101. A.M. Garofalo, R.J. La Haye, J.T. Scoville, Nucl. Fusion 42, 1335 (2002)

    Article  ADS  Google Scholar 

  102. M.P. Gryaznevich et al., Nucl. Fusion 52, 083018 (2012)

    Article  ADS  Google Scholar 

  103. V. Igochine et al., 40th EPS Conference on Plasma Physics, 2013, P5.147

    Google Scholar 

  104. Y. Liu et al., Plasma Phys. Control. Fusion 51, 115005 (2009)

    Article  ADS  Google Scholar 

  105. Y. Liu, Phys. Plasmas 17, 072510 (2010)

    Article  ADS  Google Scholar 

  106. H. Reimerdes, Nucl. Fusion 45, 368 (2005)

    Article  ADS  Google Scholar 

  107. H. Reimerdes et al., Phys. Rev. Lett. 93, 135002 (2004)

    Article  ADS  Google Scholar 

  108. G. Matsunaga et al., Phys. Rev. Lett. 103, 045001 (2009)

    Article  ADS  Google Scholar 

  109. M. Okabayashi et al., Phys. Plasmas 18, 056112 (2011)

    Article  ADS  Google Scholar 

  110. T.C. Luce, Phys. Plasmas 18, 030501 (2011)

    Article  ADS  Google Scholar 

  111. D.P. Brennan et al., Phys. Plasmas 10, 1643 (2003)

    Article  ADS  Google Scholar 

  112. S.A. Sabbagh et al., Nucl. Fusion 50, 025020 (2010)

    Article  ADS  Google Scholar 

  113. M. Holzl et al., Journal of physics. Conference Series 401, 012010 (2012)

    Article  Google Scholar 

  114. V. Igochine et al., in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, 2008, ECA 32D, P2.066 and, http://epsppd.epfl.ch/Hersonissos/html/i_index.htm

  115. T. Boltzonella et al., in Fusion Energy 2010 (Proc. 23rd Int. Conf. Daejeon, 2010) (Vienna: IAEA) CD-ROM file [EXS/P5-01] and, http://www-pub.iaea.org/mtcd/meetings/cn180_papers.asp

  116. T. Boltzonella et al., 37th EPS Conference on Plasma Physics, Dublin, Ireland, 21 - 25 June, 2010, P2.176, http://ocs.ciemat.es/EPS2010PAP/html/author.html

  117. D. Yadikin, P.R. Brunsell, J.R. Drake, Plasma Phys. Control. Fusion 48, 1 (2006)

    Article  ADS  Google Scholar 

  118. D.J. Ward et al., in Fusion Energy 2000 (Proc. 18th Int. Conf. Sorrento, 2000) (Vienna: IAEA) CD-ROM file FT/P2-20 and, http://www.iaea.org/programmes/ripc/physics/fec2000/html/node1.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Igochine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Igochine, V. (2015). Resistive Wall Mode (RWM). In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics