Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

Abstract

The next generation of fusion machines like ITER and DEMO will need a reliable method for controlling the periodic transient expulsion of a considerable amount of energy onto the plasma-facing components caused by instabilities at the plasma edge. The good plasma confinement in these tokamak devices will result in a steepened pressure profile at the plasma edge. When the pressure gradient exceeds a critical value, so-called edge- localized modes (ELMs) are destabilized. These modes feature a periodic fast collapse of the edge pressure, a sudden loss of the confinement, and a subsequent release of heat and particles onto plasma-facing components. The associated transient heat loads might cause excess erosion and lead to a strong reduction of the plasma-facing component lifetime. In this chapter, an overview of recent development of several ELM control methods for next-generation tokamaks, e.g., ITER is given. Some key physics issues related to the mechanism of ELM control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Wagner, Phys. Rev. Lett. 49, 1408 (1982)

    ADS  Google Scholar 

  2. ITER Physics Basis, Nucl. Fusion 39, 2137 (1999)

    ADS  Google Scholar 

  3. J.W. Connor, Plasma Phys. Control. Fusion 40, 531 (1998)

    ADS  Google Scholar 

  4. J.A. Snipes, Plasma Phys. Control. Fusion 40, 765 (1998)

    ADS  Google Scholar 

  5. W. Suttrop, Plasma Phys. Control. Fusion 38, 1407 (1996)

    ADS  Google Scholar 

  6. R.J. Buttery et al., in Proceedings of 22nd EPS Conference on Controlled Fusion and Plasma Physics (Bournrmouth), vol. 19C (1995), p. 273

    Google Scholar 

  7. P. Gohil, Phys. Rev. Lett. 61, 14 (1988)

    Google Scholar 

  8. M. Jiang, Plasma Phys. Control. Fusion 54, 095003 (2012)

    ADS  Google Scholar 

  9. D.C. McDonald, Fusion Sci. Technol. 53, 891 (2008)

    Google Scholar 

  10. K. Hagashima, T. Shoji, Y. Miura, Nucl. Fusion 36, 335 (1996)

    ADS  Google Scholar 

  11. N. Oyama, Nucl. Fusion 44, 582 (2004)

    ADS  Google Scholar 

  12. N. Oyama, Nucl. Fusion 45, 871 (2005)

    ADS  Google Scholar 

  13. A. Kirk, J. Nucl. Mater. 313, 1081 (2003)

    ADS  Google Scholar 

  14. R. Maingi, Nucl. Fusion 45, 1066 (2005)

    ADS  Google Scholar 

  15. H. Reimerdes, in Proceedings of 24th EPS Conference on Controlled Fusion and Plasma Physics (Berchtesgaden), vol. 21A (1997), p. 533

    Google Scholar 

  16. S. Soldatov, Plasma Phys. Control. Fusion 52, 085001 (2010)

    ADS  Google Scholar 

  17. W. Suttrop, Plasma Phys. Control. Fusion 42, A1 (2000)

    Google Scholar 

  18. H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)

    ADS  Google Scholar 

  19. A. Loarte, Plasma Phys. Control. Fusion 44, 1815 (2002)

    ADS  Google Scholar 

  20. A. Loarte, J. Nucl. Mater. 313–316, 962 (2003)

    Google Scholar 

  21. T. Ozeki, Nucl. Fusion 30, 1425 (1990)

    Google Scholar 

  22. J. Stober, Nucl. Fusion 41, 1123 (2001)

    ADS  Google Scholar 

  23. M. Bècoulet, Plasma Phys. Control. Fusion 45, A93 (2003)

    Google Scholar 

  24. H.R. Wilson, Plasma Phys. Control. Fusion 48, A71 (2006)

    ADS  Google Scholar 

  25. J. Ongena, Plasma Phys. Control. Fusion 43, A11 (2001)

    ADS  Google Scholar 

  26. G. Saibene, Plasma Phys. Control. Fusion 44, 1769 (2002)

    ADS  Google Scholar 

  27. Y. Kamada, Plasma Phys. Control. Fusion 42, A247 (2000)

    ADS  Google Scholar 

  28. Y. Kamada, Plasma Phys. Control. Fusion 44, A279 (2002)

    ADS  Google Scholar 

  29. G. Saibene, Nucl. Fusion 45, 297 (2005)

    ADS  Google Scholar 

  30. J. Stober, Nucl. Fusion 45, 1213 (2005)

    ADS  Google Scholar 

  31. R. Maingi, J. Nucl. Mater. 337–339, 727–731 (2005)

    Google Scholar 

  32. K.H. Burrell, Plasma Phys. Control. Fusion 44, A253 (2002)

    ADS  Google Scholar 

  33. W. Suttrop, Plasma Phys. Control. Fusion 45, 1399 (2003)

    ADS  Google Scholar 

  34. Y. Sakamoto, Plasma Phys. Control. Fusion 46, A299 (2004)

    Google Scholar 

  35. W. Suttrop, Nucl. Fusion 45, 721 (2005)

    ADS  Google Scholar 

  36. K.H. Burrell, Nucl. Fusion 49, 085024 (2009)

    ADS  Google Scholar 

  37. M. Greenwald, Phys. Plasma 6, 1943 (1999)

    ADS  Google Scholar 

  38. K. Kamiya, Nucl. Fusion 43, 1214 (2003)

    ADS  Google Scholar 

  39. N. Oyama, Plasma Phys. Control. Fusion 48, A171 (2006)

    ADS  Google Scholar 

  40. E.A. Frieman, Phys. Fluids 16, 1108 (1973)

    ADS  Google Scholar 

  41. J.W. Connor, Phys. Plasmas 5, 2687 (1998)

    ADS  Google Scholar 

  42. J. Manickam, Phys. Fluids B 4, 1901 (1992)

    ADS  Google Scholar 

  43. S.M. Kaye, Nucl. Fusion 30, 2621 (1990)

    Google Scholar 

  44. A.J. Webster, C.G. Gimblett, Phys. Rev. Lett. 102, 035003 (2009)

    ADS  Google Scholar 

  45. A.J. Webster, C.G. Gimblett, Phys. Plasmas 16, 082502 (2009)

    ADS  Google Scholar 

  46. G.T.A. Huysmans, Plasma Phys. Control. Fusion 47, 2107 (2005)

    ADS  Google Scholar 

  47. S. Saarelma, Plasma Phys. Control. Fusion 53, 025011 (2011)

    ADS  Google Scholar 

  48. H.R. Wilson, S.C. Cowley, Phys. Rev. Lett. 92, 175006 (2004)

    ADS  Google Scholar 

  49. A. Kirk, Plasma. Phys. Control. Fusion 46, 551 (2004)

    MathSciNet  ADS  Google Scholar 

  50. A. Kirk, Phys. Rev. Lett. 92, 245002 (2004)

    ADS  Google Scholar 

  51. A. Kirk, Plasma Phys. Control. Fusion 47, 315 (2005)

    ADS  Google Scholar 

  52. A. Schmid, Plasma Phys. Control. Fusion 50, 045007 (2008)

    ADS  Google Scholar 

  53. C.C. Hegna, Phys. Plasmas 3, 584 (1996)

    ADS  Google Scholar 

  54. S. Saarelma, Plasma Phys. Control. Fusion 48, 31 (2007)

    ADS  Google Scholar 

  55. J.W. Connor, R.J. Hastie, J.B. Taylor, Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 365, 1720 (1979)

    Google Scholar 

  56. R.L. Miller, R.W. Moore, Phys. Rev. Lett. 43, 11 (1979)

    Google Scholar 

  57. R.L. Miller, Phys. Plasmas 5, 973 (1998)

    MathSciNet  ADS  Google Scholar 

  58. J. Wesson, Tokamaks, 3rd edn. (Clarendon Press, Oxford, 2004)

    Google Scholar 

  59. C.E. Kessel, Nucl. Fusion 34, 1221 (1994)

    ADS  Google Scholar 

  60. P.B. Snyder, Phys. Plasmas 9, 2037 (2002)

    ADS  Google Scholar 

  61. H.R. Wilson, Phys. Plasmas 9, 1277 (2002)

    ADS  Google Scholar 

  62. G.T.A. Huysmans, S.E. Sharapov, A.B. Mikhailovskii, W. Kerner, Phys. Plasmas 8, 4292 (2001)

    ADS  Google Scholar 

  63. P.B. Snyder, Nucl. Fusion 44, 320 (2004)

    ADS  Google Scholar 

  64. P.B. Snyder, H.R. Wilson, Plasma Phys. Controlled Fusion 45, 1671 (2003)

    ADS  Google Scholar 

  65. A. Mossessian, Phys. Plasmas 10, 1720 (2003)

    ADS  Google Scholar 

  66. S. Saarelma, Nucl. Fusion 43, 262 (2003)

    ADS  Google Scholar 

  67. L.L. Lao, Nucl. Fusion 41, 295 (2001)

    ADS  Google Scholar 

  68. T.W. Petrie, J. Nucl. Mater. 196–198, 848 (1992)

    Google Scholar 

  69. O. Gruber, Phys. Rev. Lett. 74, 4217 (1995)

    ADS  Google Scholar 

  70. A.W. Leonard, J. Nucl. Mater. 290–293, 1097 (2001)

    Google Scholar 

  71. A.W. Degeling, Plasma Phys. Control. Fusion 45, 1637 (2003)

    ADS  Google Scholar 

  72. P.T. Lang, Nucl. Fusion 44, 665 (2004)

    ADS  Google Scholar 

  73. T.E. Evans, Nat. Phys. 2, 419 (2006)

    Google Scholar 

  74. Y. Liang, Phys. Rev. Lett. 98, 265004 (2007)

    ADS  Google Scholar 

  75. M. Shimada, Progress in the ITER Physics Basis: Chap. 1. Overview Summary Nucl. Fusion 47, S1 (2007)

    Google Scholar 

  76. K. Tobita, Nucl. Fusion 49, 075029 (2009)

    ADS  Google Scholar 

  77. P. Monier-Garbet, Nucl. Fusion 45, 1404 (2005)

    ADS  Google Scholar 

  78. R. Sartori, Plasma Phys. Control. Fusion 46, 723 (2004)

    ADS  Google Scholar 

  79. J. Rapp, Nucl. Fusion 44, 312 (2004)

    ADS  Google Scholar 

  80. J. Rapp, J. Nucl. Mater. 337–339, 826 (2005)

    Google Scholar 

  81. K. Itami, J. Nucl. Mater. 266–269, 1097 (1999)

    Google Scholar 

  82. S. Sakurai et al., J. Nucl. Mater. 290–293, 1102 (2001)

    Google Scholar 

  83. H. Kubo, Nucl. Fusion 41, 227 (2001)

    ADS  Google Scholar 

  84. H. Kubo, JT-60 team. Phys. Plasmas 9, 2127 (2002)

    Google Scholar 

  85. S. Higashijima, J. Nucl. Mater. 313–316, 1123 (2003)

    Google Scholar 

  86. J. Rapp, Plasma Phys. Control. Fusion 44, 639 (2002)

    ADS  Google Scholar 

  87. G.J. Radford, Contrib. Plasma Phys. 36, 187 (1996)

    ADS  Google Scholar 

  88. D. Reiter, H. Kever, G.H. Wolf, Plasma Phys. and Contr. Fus. 33, 1579 (1991)

    ADS  Google Scholar 

  89. A. Loarte et al., Fusion energy 2000. in Proceedings of 18th International Conference on Sorrentto (Vienna, IAEA, 2000). CD-ROM file ITERP/11R

    Google Scholar 

  90. P.T. Lang, Plasma Phys. Control. Fusion 46, L31–L39 (2004)

    ADS  Google Scholar 

  91. F. Sartori, in Proceedings of 35th EPS Conference on Plasma Physics, vol 32D (ECA) (Hersonissos, Greece, 2008), P5.045

    Google Scholar 

  92. S.P. Gerhardt, Nucl. Fusion 50, 064015 (2010)

    ADS  Google Scholar 

  93. E. de la Luna et al., in Proceedings of 36th EPS Conference on Plasma Physics (Sofia) (ECA), vol. 33E (2009), P5.174

    Google Scholar 

  94. E. de la Luna et al., 23rd IAEA, EXC/8-4 (2010)

    Google Scholar 

  95. P.T. Lang, Nucl. Fusion 43, 1110 (2003)

    ADS  Google Scholar 

  96. P.T. Lang, Nucl. Fusion 47, 754 (2007)

    ADS  Google Scholar 

  97. L.R. Baylor et al., in Proceedings of 35th EPS Conference on Plasma Physics (Hersonissos, Greece) (ECA), vol. 32D (2008), P4-098

    Google Scholar 

  98. A.R. Polevoi, Nucl. Fusion 43, 1072 (2003)

    ADS  Google Scholar 

  99. D.K. Mansfield, Nucl. Fusion 53, 113023 (2013)

    ADS  Google Scholar 

  100. L.R. Baylor, in Proceedings 37th EPS Conference on Plasma Physics and Controlled Fusion (Dublin, Ireland, 2010), P2.117 http://ocs.ciemat.es/EPS2010PAP/pdf/P2.117.pdf

  101. G.T.A. Huysmans, Plasma Phys. Control. Fusion 51, 124012 (2009)

    ADS  Google Scholar 

  102. F.M. Poli, Nucl. Fusion 50, 025004 (2010)

    ADS  Google Scholar 

  103. G. Kocsis, Nucl. Fusion 47, 1166 (2007)

    ADS  Google Scholar 

  104. S.K. Combs, J. Vac. Sci. Tech. A 6, 1901 (1988)

    ADS  Google Scholar 

  105. L.R. Baylor, Nucl. Fusion 49, 085013 (2009)

    ADS  Google Scholar 

  106. A. Kirk, Nucl. Fusion 50, 034008 (2010)

    ADS  Google Scholar 

  107. J.M. Canik, Nucl. Fusion 50, 034012 (2010)

    ADS  Google Scholar 

  108. T.E. Evans, Phys. Rev. Lett. 92, 235003 (2004)

    ADS  Google Scholar 

  109. T.E. Evans, Nucl. Fusion 48, 024002 (2008)

    ADS  Google Scholar 

  110. W. Suttrop, Phys. Rev. Lett. 106, 225004 (2011)

    ADS  Google Scholar 

  111. Y.M. Jeon, Phys. Rev. Lett. 109, 035004 (2012)

    ADS  Google Scholar 

  112. Y. Liang, Nucl. Fusion 53, 073036 (2013)

    ADS  Google Scholar 

  113. W. Suttrop et al., in Proceedings of 39th EPS Conference & 16th International Congress on Plasma Physics (2012), P2.092

    Google Scholar 

  114. Y. Liang, Nucl. Fusion 50, 025013 (2010)

    ADS  Google Scholar 

  115. I. Barlow, Fusion Eng. Des. 58–59, 189 (2001)

    Google Scholar 

  116. Y. Liang, Plasma Phys. Control. Fusion 49, B581 (2007)

    ADS  Google Scholar 

  117. Y. Liang, J. Nucl. Mater. 390–91, 733–739 (2009)

    Google Scholar 

  118. S. Jachmich, J. Nucl. Mater. 390–391, 768–772 (2009)

    Google Scholar 

  119. H.R. Koslowski et al., in 34th EPS Conference on Plasma Physics Warsaw 2-6 July 2007, ECA, vol. 31F (2007), P-5.135

    Google Scholar 

  120. M.E. Fenstermacher et al., 23rd IAEA, ITR/P1-30 (2010)

    Google Scholar 

  121. J.M. Canik, Nucl. Fusion 50, 064016 (2010)

    ADS  Google Scholar 

  122. J.C. Vallet, Phys. Rev. Lett. 67, 2662 (1991)

    ADS  Google Scholar 

  123. A. Alfier, Nucl. Fusion 48, 115006 (2008)

    ADS  Google Scholar 

  124. S. Saarelma, Plasma Phys. Control. Fusion 51, 035001 (2009)

    ADS  Google Scholar 

  125. Y. Liang, Plasma Fusion Res. 5, S2018 (2010)

    ADS  Google Scholar 

  126. E.J. Strait, Phys. Rev. Lett. 74, 2483 (1995)

    ADS  Google Scholar 

  127. R. Buttery, Phys. Plasmas 15, 056115 (2008)

    ADS  Google Scholar 

  128. R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998)

    ADS  Google Scholar 

  129. K.C. Shaing, Phys. Plasmas 10, 1443 (2003)

    ADS  Google Scholar 

  130. K.C. Shaing, Phys. Fluids 29, 521 (1986)

    ADS  Google Scholar 

  131. J.-K. Park, Phys. Rev. Lett. 102, 065002 (2009)

    ADS  Google Scholar 

  132. A.J. Cole, Phys. Plasmas 15, 056102 (2008)

    ADS  Google Scholar 

  133. W. Zhu, Phys. Rev. Lett. 96, 225002 (2006)

    ADS  Google Scholar 

  134. M. Bècoulet, Nucl. Fusion 49, 085011 (2009)

    ADS  Google Scholar 

  135. K.C. Shaing, Phys. Plasmas 15, 082506 (2008)

    ADS  Google Scholar 

  136. J.-K. Park, Phys. Plasmas 16, 056115 (2009)

    ADS  Google Scholar 

  137. A.M. Garofalo, Phys. Rev. Lett. 101, 195005 (2008)

    ADS  Google Scholar 

  138. Y. Sun, Plasma Phys. Control. Fusion 52, 105007 (2010)

    ADS  Google Scholar 

  139. A. Kirk, Phys. Rev. Lett. 108, 255003 (2012)

    ADS  Google Scholar 

  140. A. Kirk, Nucl. Fusion 53, 043007 (2013)

    ADS  Google Scholar 

  141. I.T. Chapman, Nucl. Fusion 52, 123006 (2012)

    ADS  Google Scholar 

  142. M. Jakubowski, Nucl. Fusion 49, 095013 (2009)

    ADS  Google Scholar 

  143. Y. Liang, Phys. Rev. Lett. 105, 065001 (2010)

    ADS  Google Scholar 

  144. Y. Liang, Nucl. Fusion 51, 073001 (2011)

    ADS  Google Scholar 

  145. C.G. Gimblett, R. J. Hastie, P. Helander, Phys. Rev. Lett. 96, 035006-1-4 (2006)

    Google Scholar 

  146. I.T. Chapman, Nucl. Fusion 47, L36 (2007)

    ADS  Google Scholar 

  147. R. Moyer, Nucl. Fusion 52, 123019 (2012)

    ADS  Google Scholar 

  148. R. Fischer, Plasma Phys. Control. Fusion 54, 115008 (2012)

    ADS  Google Scholar 

  149. I.T. Chapman, Plasma Phys. Control. Fusion 54, 105013 (2012)

    ADS  Google Scholar 

  150. S.P. Hirshman, D.K. Lee, Comput. Phys. Commun. 43, 143 (1986)

    MathSciNet  ADS  Google Scholar 

  151. W.A. Cooper, Comput. Phys. Commun. 180, 1524 (2009)

    ADS  Google Scholar 

  152. R.J. Sanchez, Comp. Physics 161, 576 (2000)

    ADS  MATH  Google Scholar 

  153. M.J. Schaffer, Nucl. Fusion 48, 024004 (2008)

    ADS  Google Scholar 

  154. M. Bècoulet, Nucl. Fusion 48, 024003 (2008)

    ADS  Google Scholar 

  155. M. Jakubowski, PRL 96, 035004 (2006)

    ADS  Google Scholar 

  156. O. Schmitz, Plasma Phys. Control. Fusion 50, 124029 (2008)

    ADS  Google Scholar 

  157. K. Burrell, Plasma Phys. Control. Fusion 47, B37 (2005)

    Google Scholar 

  158. M. Heyn, Nucl. Fusion 48, 024005 (2008)

    ADS  Google Scholar 

  159. R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993)

    ADS  Google Scholar 

  160. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    MathSciNet  ADS  Google Scholar 

  161. B. Hudson, Nucl. Fusion 50, 045006 (2010)

    ADS  Google Scholar 

  162. Park Jong-kyu, Phys. Rev. Lett. 99, 195003 (2007)

    ADS  Google Scholar 

  163. M.E. Fenstermacher, Nucl. Fusion 48, 122001 (2008)

    ADS  Google Scholar 

  164. M.E. Fenstermacher, J. Nucl. Mater. 390–391, 793–796 (2009)

    Google Scholar 

  165. T.E. Evans, Phys. Plasmas 13, 056121 (2006)

    ADS  Google Scholar 

  166. M.E. Fenstermacher, Phys. Plasmas 15, 056122 (2008)

    ADS  Google Scholar 

  167. R.A. Moyer, Phys. Plasmas 12, 056119 (2005)

    ADS  Google Scholar 

  168. R.A. Moyer, Nucl. Fus. 45, 595 (2005)

    ADS  Google Scholar 

  169. C.G. Lowry, Bull. Am. Phys. Soc. 54, 329 (2009)

    Google Scholar 

  170. NSTX Research 5-Year Plan for 2009-13, http://nstx.pppl.gov/fiveyearplan.html

  171. W.W. Xiao, Nucl. Fusion 52, 114027 (2012)

    ADS  Google Scholar 

  172. Kim Jayhyun, Nucl. Fusion 52, 114011 (2012)

    Google Scholar 

  173. X.L. Zou et al. in Proceedings of 24th IAEA Fusion Energy Conference October 8–13, PD/P8-08 (IAEA, San Diego, 2012)

    Google Scholar 

  174. Y. Liang, Phys. Rev. Lett. 110, 235002 (2013)

    ADS  Google Scholar 

  175. J.G. Li et al., 17 NOVEMBER 2013. Nat. Phys. DOI:10.1038/NPHYS2795

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liang, Y. (2015). Edge Localized Mode (ELM). In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics