CAPD::RedHom v2 - Homology Software Based on Reduction Algorithms

  • Mateusz Juda
  • Marian Mrozek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)

Abstract

We present an efficient software package for computing homology of sets, maps and filtrations represented as cubical, simplicial and regular CW complexes. The core homology computation is based on classical Smith diagonalization, but the efficiency of our approach comes from applying several geometric and algebraic reduction techniques combined with smart implementation.

Keywords

Homology software homology algorithms Betti numbers homology groups homology generators homology maps persistent homology cubical sets simplicial complexes CW complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dłotko, P., Kaczynski, T., Mrozek, M., Wanner, T.: Coreduction Homology Algorithm for Regular CW-Complexes. Discrete and Computational Geometry 46, 361–388 (2011), doi:10.1007/s00454-010-9303-yCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Dłotko, P., Specogna, R., Trevisan, F.: Automatic generation of cuts on large-sized meshes for the T-Omega geometric eddy-current formulation. Computer Methods in Applied Mechanics and Engineering 198, 3765–3781 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological Persistence and Simplification. Discrete and Computational Geometry 28, 511–533 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., Dłotko, P.: The Efficiency of a Homology Algorithm based on Discrete Morse Theory and Coreductions. In: Diaz, R.G., Jurado, P.R. (eds.) Proceedings of the 3rd International Workshop on Computational Topology in Image Context, Chipiona, Spain, Image A, vol. 1, pp. 41–47 (November 2010) ISSN: 1885-4508Google Scholar
  5. 5.
    Juda, M., Mrozek, M.: Z 2-Homology of weak (p − 2)-faceless p-manifolds may be computed in O(n) time. Topological Methods in Nonlinear Analysis 40, 137–159 (2012)MATHMathSciNetGoogle Scholar
  6. 6.
    Kaczynski, T., Dłotko, P., Mrozek, M.: Computing the Cubical Cohomology Ring. In: Diaz, R.G., Jurado, P.R. (eds.) Proceedings of the 3rd International Workshop on Computational Topology in Image Context, Chipiona, Spain, Image A, vol. 3, pp. 137–142 (2010) ISSN: 1885-4508Google Scholar
  7. 7.
    Kaczynski, T., Mischaikow, M., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, vol. 157. Springer-Verlag (2004)Google Scholar
  8. 8.
    Kaczynski, T., Mrozek, M., Ślusarek, M.: Homology computation by reduction of chain complexes. Computers and Math. Appl. 35, 59–70 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Kapela, T., Mrozek, M., Pilarczyk, P., Wilczak, D., Zgliczyński, P.: CAPD - a Rigorous Toolbox for Computer Assisted Proofs in Dynamics, technical report, Jagiellonian University (2010)Google Scholar
  10. 10.
    Mischaikow, K., Mrozek, M.: Chaos in Lorenz equations: a computer assisted proof. Bull. AMS (N.S.) 33, 66–72 (1995)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer assisted proof. Part II: details. Mathematics of Computation 67, 1023–1046 (1998)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mischaikow, K., Mrozek, M., Pilarczyk, P.: Graph approach to the computation of the homology of continuous maps. Found. Comp. Mathematics 5, 199–229 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Mrozek, M.: Index Pairs Algorithms. Found. Comp. Mathematics 6, 457–493 (2006)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Mrozek, M.: Čech Type Approach to Computing Homology of Maps. Discrete and Computational Geometry 44(3), 546–576 (2010), doi:10.1007/s00454-010-9255-2.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Mrozek, M., Pilarczyk, P., Żelazna, N.: Homology algorithm based on acyclic subspace. Computers and Mathematics with Applications 55, 2395–2412 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Mrozek, M., Batko, B.: Coreduction homology algorithm. Discrete and Computational Geometry 41, 96–118 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Computers and Mathematics with Applications 60(10), 2812–2833 (2010), doi:10.1016/j.camwa.2010.09.036CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mrozek, M., Żelawski, M., Gryglewski, A., Han, S., Krajniak, A.: Homological methods for extraction and analysis of linear features in multidimensional images. Pattern Recognition 45, 285–298 (2012)CrossRefGoogle Scholar
  19. 19.
    Pilarczyk, P.: Computer assisted method for proving existence of periodic orbits. Topological Methods in Nonlinear Analysis 13, 365–377 (1999)MATHMathSciNetGoogle Scholar
  20. 20.
    Koonin, J.: Topology of eigenspace posets for imprimitive reflection groups, http://arxiv.org/abs/1208.4435
  21. 21.
    Computer Assisted Proofs in Dynamics, http://capd.ii.uj.edu.pl/
  22. 22.
    Reduction Homology Algorithms, http://redhom.ii.uj.edu.pl/
  23. 23.
    Computational Homology Project, http://chomp.rutgers.edu/
  24. 24.
  25. 25.
  26. 26.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mateusz Juda
    • 1
  • Marian Mrozek
    • 1
  1. 1.Institute of Computer Science and Computational MathematicsJagiellonian UniversityPoland

Personalised recommendations