Bacterial Genomics and Computational Group Theory: The BioGAP Package for GAP

  • Attila Egri-Nagy
  • Andrew R. Francis
  • Volker Gebhardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)

Abstract

Bacterial genomes can be modelled as permutations of conserved regions. These regions are sequences of nucleotides that are identified for a set of bacterial genomes through sequence alignment, and are presumed to be preserved through the underlying process, whether through chance or selection. Once a correspondence is established between genomes and permutations, the problem of determining the evolutionary distance between genomes (in order to construct phylogenetic trees) can be tackled by use of group-theoretical tools. Here we review some of the resulting problems in computational group theory and describe BioGAP, a computer algebra package for genome rearrangement calculations, implemented in GAP.

Keywords

computational group theory bacterial genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8(5), 483–491 (2001)CrossRefGoogle Scholar
  2. 2.
    Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. In: IEEE Proceedings of the 34th Annual Symposium on the Foundations of Computer Science, pp. 148–157 (1993)Google Scholar
  3. 3.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics. Springer (2005)Google Scholar
  4. 4.
    Darling, A.E., Miklós, I., Ragan, M.A.: Dynamics of genome rearrangement in bacterial populations. PLoS Genetics 4(7) (2008)Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)Google Scholar
  6. 6.
    Delgado, M., Egri-Nagy, A., Mitchell, J.D., Pfeiffer, M.: VIZ – GAP package for visualisation (2014), https://bitbucket.org/james-d-mitchell/viz
  7. 7.
    Egri-Nagy, A., Francis, A.R.: BioGAP – software package for genome rearrangement calculations (2014), https://bitbucket.org/egri-nagy/biogap
  8. 8.
    Egri-Nagy, A., Gebhardt, V., Tanaka, M.M., Francis, A.R.: Group-theoretic models of the inversion process in bacterial genomes. Journal of Mathematical Biology, 23 pages (June 2013) (in press)Google Scholar
  9. 9.
    Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and dynagraph – static and dynamic graph drawing tools. In: Graph Drawing Software, pp. 127–148. Springer (2003)Google Scholar
  10. 10.
    Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome rearrangements. MIT Press (2009)Google Scholar
  11. 11.
    Francis, A.R.: An algebraic view of bacterial genome evolution. Journal of Mathematical Biology, 26 pages (December 2013) (in press)Google Scholar
  12. 12.
    Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. OUP, Oxford (2005)Google Scholar
  13. 13.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 581–592 (1995)Google Scholar
  14. 14.
    Holt, D., Eick, B., O’Brien, E.: Handbook of Computational Group Theory. CRC Press (2005)Google Scholar
  15. 15.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for the inversion distance between two chromosomes. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Knuth, D.E.: The Art of Computer Programming: Sorting and searching. The Art of Computer Programming. Addison-Wesley (1998)Google Scholar
  17. 17.
    Miklós, I., Darling, A.E.: Efficient sampling of parsimonious inversion histories with application to genome rearrangement in yersinia. Genome Biology & Evolution 2009 (2009)Google Scholar
  18. 18.
    Siepel, A.C.: An algorithm to enumerate all sorting reversals. In: Proceedings of the Sixth Annual International Conference on Computational Biology (2002)Google Scholar
  19. 19.
    Tantau, T.: TikZ and PGF manual for version 2.10. University of Lübeck (2010), http://texample.net/
  20. 20.
    Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem. Journal of Theoretical Biology 99(1), 1–7 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Attila Egri-Nagy
    • 1
  • Andrew R. Francis
    • 1
  • Volker Gebhardt
    • 1
  1. 1.Centre for Research in Mathematics, School of Computing, Engineering and MathematicsUniversity of Western SydneyAustralia

Personalised recommendations