Skip to main content

Software Packages for Holonomic Gradient Method

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8592)

Abstract

We present software packages for the holonomic gradient method (HGM). These packages compute normalizing constants and the probabilities of some regions. While many algorithms which compute integrals over high-dimensional regions utilize the Monte-Carlo method, our HGM utilizes algorithms for solving ordinary differential equations such as the Runge-Kutta-Fehlberg method. As a result, our HGM can evaluate many integrals with a high degree of accuracy and moderate computational time. The source code of our packages is distributed on our web page [12].

Keywords

  • holonomic gradient method
  • normalizing constant
  • region probability
  • Bingham prior
  • R project

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44199-2_105
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44199-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  2. GNU Scientific Library, http://www.gnu.org/s/gsl

  3. Koyama, T., Takemura, A.: Calculation of Orthant Probabilities by the Holonomic Gradient Method, arxiv:1211.6822

    Google Scholar 

  4. Kume, A., Wood, A.T.A.: On the Derivatives of the Normalizing Constant of the Bingham Distribution. Statistics and Probability Letters 77, 832–837 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Miwa, T., Hayter, H.J., Kuriki, S.: The evaluation of general non-centered orthant probabilities. Journal of the Royal Statistical Society: Series B 65, 223–234 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Nakayama, H., Nishiyama, K., Noro, M., Ohara, K., Sei, T., Takayama, N., Takemura, A.: Holonomic Gradient Descent and its Application to the Fisher-Bingham Integral. Advances in Applied Mathematics 47, 639–658 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. The R: Project for Statistical Computing, http://www.r-project.org

  8. Risa/Asir, a computer algebra system, http://www.math.kobe-u.ac.jp/Asir

  9. Sei, T., Kume, A.: Calculating the Normalizing Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method. Statistics and Computing (2013)

    Google Scholar 

  10. Writing R Extensions, http://cran.r-project.org/doc/manuals/R-exts.html

  11. Zeilberger, D.: A Holonomic Systems Approach to Special Function Identities. Journal of Computational and Applied Mathematics 32, 321–368 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koyama, T., Nakayama, H., Ohara, K., Sei, T., Takayama, N. (2014). Software Packages for Holonomic Gradient Method. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_105

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)