Function Interval Arithmetic

  • Jan Duracz
  • Amin Farjudian
  • Michal Konečný
  • Walid Taha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)


We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computation. Function intervals can be used as mathematical objects in their own right or as enclosures of functions over the reals. We present two areas of application of function interval arithmetic and associated software that implements the arithmetic: (1) Validated ordinary differential equation solving using the AERN library and within the Acumen hybrid system modeling tool. (2) Numerical theorem proving using the PolyPaver prover.


Validated Numeric Computation ODEs Theorem Proving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CS93]
    Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. Presented at SIBGRAPI 1993, Recife, PE, Brazil (October 1993)Google Scholar
  2. [DK14a]
    Darulova, E., Kuncak, V.: Sound compilation of reals. SIGPLAN Not. 49(1), 235–248 (2014)Google Scholar
  3. [DK14b]
    Duracz, J., Konečný, M.: Polynomial function intervals for floating-point software verification. Annals of Mathematics and Artificial Intelligence 70, 351–398 (2014)CrossRefMathSciNetGoogle Scholar
  4. [EP07]
    Edalat, A., Pattinson, D.: A domain-theoretic account of Picard’s theorem. LMS Journal of Computation and Mathematics 10, 83–118 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [GHK+03]
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. Encycloedia of Mathematics and its Applications, vol. 93. Cambridge University Press (2003)Google Scholar
  6. [Kau80]
    Kaucher, E.: Interval analysis in the extended interval space IR. Computing Suppl. 2, 33–49 (1980)CrossRefMathSciNetGoogle Scholar
  7. [KTD+13]
    Konečný, M., Taha, W., Duracz, J., Duracz, A., Ames, A.: Enclosing the behavior of a hybrid system up to and beyond a Zeno point, pp. 120–125. IEEE (2013)Google Scholar
  8. [MB02]
    Makino, K., Berz, M.: New applications of Taylor model methods. In: Automatic Differentiation of Algorithms: From Simulation to Optimization, ch. 43, pp. 359–364. Springer (2002)Google Scholar
  9. [MB09]
    Makino, K., Berz, M.: Rigorous integration of flows and odes using taylor models. In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC 2009, pp. 79–84. ACM, New York (2009)Google Scholar
  10. [MM93]
    Müller, T.N., Moiske, B.: Solving initial value problems in polynomial time. In: Proc. 22 JAIIO - PANEL 1993, Part 2, pp. 283–293 (1993)Google Scholar
  11. [Mül01]
    Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [Tuc02]
    Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. In: Foundations of Computational Mathematics, pp. 53–117 (2002)Google Scholar
  13. [War56]
    Warmus, M.: Calculus of approximations. Bull. Acad. Polon. Sci. Cl. III IV(5), 253–259 (1956)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jan Duracz
    • 1
  • Amin Farjudian
    • 2
  • Michal Konečný
    • 3
  • Walid Taha
    • 4
    • 5
  1. 1.No AffiliationPoland
  2. 2.School of Computer ScienceUniversity of Nottingham NingboChina
  3. 3.School of Engineering and Applied ScienceAston UniversityBirminghamUK
  4. 4.Halmstadt UniversitySweden
  5. 5.Rice UniversityHoustonUSA

Personalised recommendations