Skip to main content

Enhancing the Simulation of Boundaries by Coupling Tactile and Kinesthetic Feedback

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8619))

Abstract

Haptic enhanced boundaries are important for touch interaction. We quantify the amount of perceived force increment caused by adding variable friction tactile feedback to force feedback in simulating a boundary. We find that using a small lateral force feedback plus a tactile feedback can simulate a boundary which feels as stiff as that simulated by a large lateral force feedback. Moreover, the effect of the tactile feedback may be explained as a lateral force increment caused by increasing the friction coefficient of the touch surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banter, B.: Touch screens and touch surfaces are enriched by haptic force-feedback. Inf. Disp. 26(3), 26–30 (2010)

    Google Scholar 

  2. Poupyrev, I., Maruyama, S., Rekimoto, J.: Ambient touch: designing tactile interfaces for handheld devices. In: Proceedings of UIST 2002, pp. 51–60 (2002)

    Google Scholar 

  3. Forlines, C., Balakrishnan, R.: Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. In: Proceedings of CHI 2008, pp. 1563–1572 (2008)

    Google Scholar 

  4. Hoggan, E., Brewster, S.A., Johnston, J.: Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of CHI 2008, pp. 1573–1582 (2008)

    Google Scholar 

  5. Levesque, V., et al.: Enhancing physicality in touch interaction with variable friction. In: Proceedings of CHI 2011, pp. 2481–2490 (2011)

    Google Scholar 

  6. Casiez, G., et al.: Surfpad: riding towards targets on a squeeze film effect. In: Proceedings of the CHI 2011, pp. 2491–2500 (2011)

    Google Scholar 

  7. Yang, Y., et al.: Adding haptic feedback to touch screens at the right time. In: Proceedings of ICMI 2011, pp. 73–80 (2011)

    Google Scholar 

  8. Yang, Y., et al.: Power analysis for design of a large area ultrasonic tactile touch panel. Submitted to IEEE Trans. Haptics (2013)

    Google Scholar 

  9. Giraud, F., et al.: Design of a transparent tactile stimulator. In: Proceedings of Haptics Symposium 2012, pp. 485–489 (2012)

    Google Scholar 

  10. Biet, M., et al.: Discrimination of virtual square gratings by dynamic touch on friction based tactile displays. In: Proceedings of Haptics Symposium 2008, pp. 41–48 (2008)

    Google Scholar 

  11. Gescheider, G.A.: Psychophysics: The Fundamentals. Lawrence Erlbaum Associates, New Jersey (1997)

    Google Scholar 

  12. LaMotte, R.H.: Softness discrimination with a tool. J. Neurophysiol. 83(4), 1777–1786 (2000)

    Google Scholar 

  13. Brodie, E., Ross, H.: Sensorimotor mechanisms in weight discrimination. Percept. Psychophys. 36(5), 477–481 (1984)

    Article  Google Scholar 

  14. Kammermeier, P., et al.: Display of holistic haptic sensations by combined tactile and kinesthetic feedback. Presence: Teleoper. Virtual Environ. 13(1), 1–15 (2004)

    Article  Google Scholar 

  15. Khatchatourov, A., et al.: Integrating tactile and force feedback for highly dynamic tasks: technological, experimental and epistemological aspects. Interact. Comput. 21(1–2), 26–37 (2009)

    Article  Google Scholar 

  16. Frisoli, A., et al.: A fingertip haptic display for improving curvature discrimination. Presence: Teleoper. Virtual Environ. 17(6), 550–561 (2008)

    Article  Google Scholar 

  17. Samur, E., Colgate, J.E., Peshkin, M.A.: Psychophysical evaluation of a variable friction tactile interface. In: Proceedings of SPIE-IS&T 2009, pp. 72400J1–72400J7 (2009)

    Google Scholar 

  18. Provancher, W.R., Sylvester, N.D.: Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2, 212–223 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been carried out within the framework of the INRIA Mint Project, and the STIMTAC project of the IRCICA, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Zhang, Y., Lemaire-Semail, B., Dai, X. (2014). Enhancing the Simulation of Boundaries by Coupling Tactile and Kinesthetic Feedback. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44196-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44196-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44195-4

  • Online ISBN: 978-3-662-44196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics