Skip to main content

Correction on Data Matching and Remounting Errors

  • Chapter
  • First Online:
Pose-varied Multi-axis Optical Finishing Systems
  • 420 Accesses

Abstract

A nonlinear distortion arises due to imperfect imaging through a null corrector during aspheric interferometer testing. Also, the remounting accuracy of optical components between testing and manufacturing affects the process results. This chapter proposed an interval method to trace all intersections, and polynomials or spline method was presented to correct the nonlinear mapping errors. A mask was created to provide reference points on component surface because such points are important in identifying remounting errors. A mathematical model that describes the relationship between remounting errors and reference points was constructed. The remounting errors are then regarded as bases in correcting the parameters used for actual process validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forbes G (2011) Manufacturability estimates for optical aspheres. Opt Express 19(10):9923–9941

    Article  Google Scholar 

  2. Guo C, Su X, Chen W, Lei B, Wu F (2012) Three-dimensional shape measurement of large-aperture aspheric mirrors by off-axis null Ronchi test. Appl Opt 51(9):1276–1282

    Article  Google Scholar 

  3. Kim T, Burge JH, Lee Y, Kim S (2004) Null test for a highly paraboloidal mirror. Appl Opt 43(18):3614–3618

    Article  Google Scholar 

  4. Murphy PE, Brown TG, Moore DT (2000) Interference imaging for aspheric surface testing. Appl Opt 39(13):2122–2129

    Article  Google Scholar 

  5. Novak M, Zhao C, Burge JH (2008) Distortion mapping correction in aspheric null testing. In: Proceeding of SPIE. San Diego, 706313-706313-8

    Google Scholar 

  6. Burge JH (1993) Advanced techniques for measuring primary mirrors for astronomical telescopes. The University of Arizona, Tucson

    Google Scholar 

  7. Selberg LA (1991) Interferometer accuracy and precision. In: Proceeding of SPIE. Singapore, pp 24–32

    Google Scholar 

  8. Zhao C, Burge JH (2007) Orthonormal vector polynomials in a unit circle, part I: basis set derived from gradients of Zernike polynomials. Opt Express 15(26):18014–18024

    Article  Google Scholar 

  9. Zhao C, Burge JH (2008) Orthonormal vector polynomials in a unit circle, part II: completing the basis set. Opt Express 16(9):6586–6591

    Article  Google Scholar 

  10. Zhao C, Burge JH (2009) Orthonormal vector polynomials in a unit circle, application: fitting mapping distortions in a null test. In: Proceeding of SPIE. San Diego, 74260 V-74260 V-8

    Google Scholar 

  11. Zhou P, Martin H, Zhao C, Burge JH (2012) Mapping distortion correction for GMT interferometric test. In: Proceeding of SPIE. Monterey, OW3D. 2

    Google Scholar 

  12. Gorshkov V, Kutvitskiĭ V, Savel AS (2011) Compensating the distortions detected by interference monitoring of off-axis aspheric surfaces when null correctors are used. J Opt Technol 78(4):262–265

    Article  Google Scholar 

  13. Hudyma RM, Sommargren GE (1998) Minimizing mapping-induced OPD errors when testing aspheric mirrors. In: Proceeding of SPIE. Santa Clara, pp 96–101

    Google Scholar 

  14. Sommargren GE, Phillion DW, Campbell EW (1999) Sub-nanometer interferometry for aspheric mirror fabrication. In: Precision science and technology for perfect surfaces, proceedings of the 9th international conference on precision engineering (9th ICPE), pp 329–335

    Google Scholar 

  15. Murphy PE, Brown TG, Moore DT (2000) Interference imaging for aspheric surface testing. Appl Opt 39(13):2122–2129

    Article  Google Scholar 

  16. Zhou P, Martin H, Zhao C, Burge JH (2012) Mapping distortion correction for GMT interferometric test. In: Optical fabrication and testing. Monterey, OW3D. 2

    Google Scholar 

  17. Moya J, Landgrave J (1987) Third-order design of refractive Offner compensators. Appl Opt 26(13):2667–2672

    Article  Google Scholar 

  18. Tian C, Yang Y, Wei T, Zhuo Y (2011) Nonnull interferometer simulation for aspheric testing based on ray tracing. Appl Opt 50(20):3559–3569

    Article  Google Scholar 

  19. Kim T, Burge JH, Lee Y, Kim S (2004) Null test for a highly paraboloidal mirror. Appl Opt 43(18):3614–3618

    Article  Google Scholar 

  20. Dunn CR, Walker DD (2008) Pseudo-random tool paths for CNC sub-aperture polishing and other applications. Opt Express 16(23):18942–18949

    Article  Google Scholar 

  21. Faehnle OW (2012) Abrasive jet polishing approaches to the manufacture of micro-optics with complex shapes. In: Optical fabrication and testing. Monterey, OM3D. 4

    Google Scholar 

  22. Shi C, Yuan J, Wu F, Wan Y (2011) Ultra-precision figuring using submerged jet polishing. Chin Opt Lett 9(9):092201

    Article  Google Scholar 

  23. Kordonski W, Shorey A (2007) Magnetorheological (MR) Jet Finishing Technological. J Intell Mater Syst Struct 18(12):112701130

    Article  Google Scholar 

  24. Tricard M, Kordonski W, Shorey A, Evans C (2006) Magnetorheological jet finishing of conformal, freeform and steep concave optics. CIRP Ann Manuf Technol 55(1):309–312

    Article  Google Scholar 

  25. Wang T, Cheng HB, Dong ZC, Tam HY (2013) Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid. J Mater Process Technol 213(9):1532–1537

    Article  Google Scholar 

  26. Kordonski WI, Shorey AB, Tricard M (2006) Magnetorheological jet (MR JetTM) finishing technology. J Fluids Eng 128(1):20–26

    Article  Google Scholar 

  27. Van BH, Groeneveld M, Booij SM, Braat JJM (2002) In-process measurements of material removal in fluid jet polishing. In: Proceeding of SPIE. Seattle, pp 243–250

    Google Scholar 

  28. Booij SM, Fähnle OW, Braat JJ (2004) Shaping with fluid jet polishing by footprint optimization. Appl Opt 43(1):67–69

    Article  Google Scholar 

  29. Jones RA (1995) Computer simulation of smoothing during computer-controlled optical polishing. Appl Opt 34(7):1162–1169

    Article  Google Scholar 

  30. Messelink WACM, Waeger R, Wons T, Meeder M, Heiniger KC, Faehnle OW (2005) Prepolishing and finishing of optical surfaces using fluid jet polishing. In: Proceeding of SPIE. California, 586908-586908-6

    Google Scholar 

  31. Tam HY, Cheng HB (2010) An investigation of the effects of the tool path on the removal of material in polishing. J Mater Process Technol 210(5):807–818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobo Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, H. (2015). Correction on Data Matching and Remounting Errors. In: Pose-varied Multi-axis Optical Finishing Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44182-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44182-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44181-7

  • Online ISBN: 978-3-662-44182-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics