Advertisement

Infrastructure Interdependencies: Modeling and Analysis

  • Gabriele Oliva
  • Roberto SetolaEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 565)

Abstract

In this chapter some of the most well established approaches to model Critical Infrastructure Interdependencies are discussed. Specifically the holistic methods, where the interaction among infrastructures is seen from a very high level of abstraction, are compared with agent-based models, where the dependency phenomena that may arise among subsystems are considered both in terms of functional and topological relations. In order to better clarify the different approaches, the Input–Output Inoperability Model is discussed as one of the most representative Holistic methodologies; Agent-based methods are then discussed with particular reference to the Agent-Based Input–Output Inoperability Model, an extension of the Input–Output Inoperability Model, developed by the authors. The increased level of detail clashes with the lack of adequate quantitative data required to tune the models, which are typically assessed based on economic exchange among infrastructures; in order to partly overcome such an issue, an Input–Output methodology based on the theory of Fuzzy Systems is discussed. Finally, some conclusive remarks and open issues are collected.

Keywords

Critical infrastructures Interdependency modeling Input–output models Leontief Agent-based systems Fuzzy systems 

References

  1. 1.
    Suter, M., Brunner, E.: International CIIP Handbook 2008/2009. Center for Security Studies, ETH Zurich (2008)Google Scholar
  2. 2.
    E.U. Commission: Green Paper on a European Programme for Critical Infrastructure Protection COM(2005)576, Brussels (2005)Google Scholar
  3. 3.
    Falliere, N., O’ Murchu, L., Chien, E.: W32. Stuxnet Dossier. White Paper, Symantec Corp., Security Response, Version 1.4 (2011)Google Scholar
  4. 4.
    Rios, B., McCorkle, T.: 100 Bugs in 100 days: an analysis of ICS (SCADA) Software. DerbyCon 2011, SessionGoogle Scholar
  5. 5.
    Haimes, Y., Jiang, P.: Leontief-based model of risk in complex interconnected infrastructures. J. Infrastruct. Syst. 7, 1–12 (2001)Google Scholar
  6. 6.
    Haimes, Y., Horowitz, B., Lambert, J., Santos, J., Lian, C., Crowther, K.: Inoperability input–output model for interdependent infrastructure sectors. I: theory and methodology. J. Infrastruct. Syst. 11(2), 67–79 (2005)CrossRefGoogle Scholar
  7. 7.
    Rinaldi, S., Peerenboom J., Kelly, T.: Identifying understanding and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 26, 11–25 (2001)Google Scholar
  8. 8.
    Kujawski, E.: Multi-period model for disruptive events in interdependent systems. Int. Syst. Eng. 9(4), 281–295 (2006)CrossRefGoogle Scholar
  9. 9.
    Lewis T.G.: Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation. Wiley, New York (2006)Google Scholar
  10. 10.
    Setola, R., De Porcellinis, S., Sforna, M.: Critical infrastructure dependency assessment using the input–output inoperability model. Int. J. Crit. Infrastruct. Protect. 2, 170–178 (2009)CrossRefGoogle Scholar
  11. 11.
    Oliva, G., Panzieri, S., Setola, R.: Fuzzy dynamic input–output inoperability model. Int. J. Crit. Infrastruct. Prot. 4(3–4), 165–175 (2011). doi: 10.1016/j.ijcip.2011.09.003 CrossRefGoogle Scholar
  12. 12.
    Oliva, G., Panzieri S., Setola, R.: Fuzzy input-output inoperability model. Crit. Inf. Infrastruct. Secur. Lect. Notes Comput. Sci. 6983, 200–204 (2013)Google Scholar
  13. 13.
    Oliva, G., Panzieri, S., Setola, R.: Distributed synchronization under uncertainty: a fuzzy approach. Fuzzy Sets Syst. (Elsevier eds.) 206, 103–120 (2012). doi: 10.1016/j.fss.2012.02.003 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Oliva, G.: Stability and level-wise representation of discrete-time fuzzy systems. Int. J. Fuzzy Syst. 14(2), 185–192 (2012)MathSciNetGoogle Scholar
  15. 15.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to the Computerized Processing of Uncertainty. Plenum, New York (1993)Google Scholar
  16. 16.
    Setola, R.: How to measure the degree of interdependencies among critical infrastructures. Int. J. Syst. Syst. Eng. 2(1/2010), 38–59 (2010) (to appear)Google Scholar
  17. 17.
    De Porcellinis, S., Panzieri, S., Setola, R., Ulivi, G.: Simulation of heterogeneous and interdependent critical infrastructures. In: Proceedings of 50th ANIPLA Conference (2006)Google Scholar
  18. 18.
    Macdonald, R., Bologna, S.: Advanced modelling and simulation methods and tools for critical infrastructure protection. ACIP project report (2001)Google Scholar
  19. 19.
    U.S. and Canada Power System Outage Task Force: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations (2004)Google Scholar
  20. 20.
    De Porcellinis, S., Oliva, G., Panzieri, S., Setola, R.: A holistic-reductionistic approach for modeling interdependencies. In: Papa, M., Shenoi S. (eds.) Critical Infrastructure Protection III, vol. 311/2009, pp. 215–227. Springer, Berlin (2009)Google Scholar
  21. 21.
    Watts, D.J., Strogartz, S.H.: Collective dynamics in small–world networks. Nature 393, 440 (1998)CrossRefGoogle Scholar
  22. 22.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41 (2001)CrossRefGoogle Scholar
  23. 23.
    De Porcellinis, S., Issacharoff, L., Meloni, S., Rosato, V., Setola, R., Tiriticco F.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. (IJCIS) 4(1/2), 63–79 (2008)Google Scholar
  24. 24.
    Duenas-Osorio, L., Craig, J.I., Goodno, B.J., Bostrom, A.: Interdependent Response of networked systems. J. Infrastruct. Syst. 13(3) 185–194 (2007)Google Scholar
  25. 25.
    Hopkinson, K., Birman, K., Giovanini, R., Coury, D., Wang, X., Thorp, J.: EPOCHS: integrated commercial off-the-shelf software for agent-based electric power and communication. In: Proceedings of Winter Simulation Conference, pp. 1158–1166. Luisiana, 7–10 Dec 2003Google Scholar
  26. 26.
    Pederson, P., Dudenhoeffer, D., Hartley S., Permann, M.: Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research, Idahho National Laboratory, August 2006 (2006)Google Scholar
  27. 27.
    De Porcellinis, S., Panzieri, S., Setola, R.: Modelling critical infrastructure via a mixed holistic reductionistic approach. Int. J. Critical Infrastruct. (Inderscience eds.) 5(1/2), 86–99, Inderscience (2009)Google Scholar
  28. 28.
    Crowther, K.G., Haimes, Y.Y.: Development of the multiregional inoperability input–output model (MRIIM) for spatial explicitness in preparedness of interdependent regions. Syst. Eng. 13(1), 28–46 (2010)Google Scholar
  29. 29.
    Leontief, W.: The Structure of the American Economy 1919–1939. Oxford University Press, Oxford (1951)Google Scholar
  30. 30.
    Chenery, H.B., Watanabe, T.: International comparison of the structure of production. Econometrica 26(4), 98–139 (1958)CrossRefGoogle Scholar
  31. 31.
    Rasmussen, P.: Studies in Intersectoral Relations. North Holland, Amsterdam, The Netherlands (1956)Google Scholar
  32. 32.
    Luenberger, D.: Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley Ed., New York (1979)Google Scholar
  33. 33.
    Oliva, G., Panzieri, S., Setola, R.: Agent based input–output interdependency model. Int. J. Crit. Infrastruct. Protect. (Elsevier) 3(2), 76–82 (2010). doi: 10.1016/j.ijcip.2010.05.001 CrossRefGoogle Scholar
  34. 34.
    Oliva, G., Setola, R., Panzieri, S.: Distributed consensus under ambiguous information. Int. J. Syst. Syst. Eng. 4(1), 55–78 (2013). doi: 10.1504/IJSSE.2013.053504 CrossRefGoogle Scholar
  35. 35.
    Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London (2003)Google Scholar
  36. 36.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Hanss, M.: Applied Fuzzy Arithmetic, An Introduction with Engineering Applications. Springer, Berlin. ISBN 3-540-24201-5 (2005)Google Scholar
  38. 38.
    Kellett, C.M., Teel, A.R.: On the robustness of KL-stability for difference inclusions: smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Oliva, G., Panzieri, S., Setola, R.: Discrete-time LTI fuzzy systems: stability and representation. In: 51th Conference on Decision and Control (CDC2012) Maui USA (2012)Google Scholar
  40. 40.
    Dehghan, M., Ghatee, M., Hashemi, B.: Inverse of a fuzzy matrix of fuzzy numbers. Int. J. Comput. Math. 86(8), 1433–1452 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Rohn, J.: Inverse interval matrix. SIAM J. Numer. Anal. 30(3), 864–870 (1993)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University Campus Bio-Medico of RomeRomeItaly

Personalised recommendations