Telecommunication Networks

  • Rasmus L. OlsenEmail author
  • Kartheepan Balachandran
  • Sara Hald
  • Jose Gutierrez Lopez
  • Jens Myrup Pedersen
  • Matija Stevanovic
Part of the Studies in Computational Intelligence book series (SCI, volume 565)


In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look at the deployment of the physical layout of the communication network and the related costs. This is an important aspect as one option to use existing networks is to deploy dedicated networks. Following this, we look at some generic models that describe reliability for accessing dynamic information. This part illustrates how protocols can be reconfigured to fulfil reliability requirements, as an important part of providing reliable data access to the critical applications running over the network. Thereafter, we take a look at the security of the network, by looking at a framework that describes the digital threats to the critical infrastructure. Finally, before our conclusions and outlook, we give a brief overview of some key activities in the field and what research directions are currently investigated.


Communication networks Smart grid Inter-operability Dynamic information access Reliability Availability Cyber security 


  1. 1.
    Future Internet 2020: Visions of an Industry Expert Group, DG Information Society and Media Directorate for Converged Networks and Service—“The Internet People”, May 2009, European Commission, Information Society and Media. ISBN: 978-92-79-11320-8, doi: 10.2759/4425
  2. 2.
    Tannenbaum, A.S.: Computer Networks, 4th edn. Prentice Hall, Upper Saddle River, Internation Edition, ISBN: 0-13-038488-7Google Scholar
  3. 3.
  4. 4.
    Prasad, R., Mihovska, A.: New Horizons in Mobile and Wireless Communications: Reconfigurability, ISBN: 978-1-60783-971-2, New Horizons in Mobile and Wireless Communications series, Artech House (2009)Google Scholar
  5. 5.
    Wang, W., Xu, Y., Khanna, M.: A survey on the communication architectures in smart grid. Comput. Netw. 55(15), 3604–3629Google Scholar
  6. 6.
  7. 7.
    Murray, et al.: Why is it difficult to implement ehealth initiatives? A qualitative study. Implementation Sci. 6, 6 (2011)CrossRefGoogle Scholar
  8. 8.
    Strobla, R.O., Robillardb, P.D.: Network design for water quality monitoring of surface freshwaters: a review. J. Environ. Manag. 87(4), 639–648 2008.
  9. 9.
    Mattern, F., Staake, T., Weiss, M.: ICT for green—how computers can help us to conserve energy. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking (e-Energy 2010), ACM, pp. 1–10. Passau (2010)Google Scholar
  10. 10.
    Lim, H.-T., Volker, L., Herrscher, D.: Challenges in a future IP/ethernet-based in-car network for real-time applications. In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 7–12, 5–9 June 2011Google Scholar
  11. 11.
    Karjalainen, S.: Consumer preferences for feedback on household electricity consumption. Energy Build. 43(23), 458–467 (2011). ISSN 0378-7788, doi: 10.1016/j.enbuild.2010.10.010
  12. 12.
    Ye, Y.; Yi, Q., Sharif, H.: A secure and reliable in-network collaborative communication scheme for advanced metering infrastructure in smart grid. In: Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pp. 909–914, 28–31 March 2011Google Scholar
  13. 13.
    Bliek, F., van den Noort, A., Roossien, B., Kamphuis, R., de Wit, J., van der Velde, J., Eijgelaar, M.: PowerMatching City, a living lab smart grid demonstration. In: Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, pp. 1–8, 11–13 Oct 2010Google Scholar
  14. 14.
    Benzi, F., Anglani, N., Bassi, E., Frosini, L.: Electricity smart meters interfacing the households. IEEE Trans. Ind. Electron. 58(10), 4487–4494 (2011)CrossRefGoogle Scholar
  15. 15.
    Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., Gudi, N.: Smart meters for power grid—challenges, issues, advantages and status. In: Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES, pp. 1–7, 20–23 Mar 2011Google Scholar
  16. 16.
    Byun, J., Hong, I., Kang, B., Park, S.: A smart energy distribution and management system for renewable energy distribution and context-aware services based on user patterns and load forecasting. IEEE Trans. Consum. Electron. 57(2), 436–444 (2011)CrossRefGoogle Scholar
  17. 17.
    LeMay, M., Nelli, R., Gross, G., Gunter, C.A.: An integrated architecture for demand response communications and control. In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences, pp. 174, 7–10 Jan 2008Google Scholar
  18. 18.
    Wang, W., Xu, Y., Khanna, M.: A survey on the communication architectures in smart grid. J. Comput. Netw. 55(15), 3604–3629 (2011)CrossRefGoogle Scholar
  19. 19.
    Sidhu, T.S., Yin, Y.: Modelling and simulation for performance evaluation of IEC61850-based substation communication systems. IEEE Trans. Power Delivery 22(3), 1482–1489 (2007)CrossRefGoogle Scholar
  20. 20.
    Kanabar, M.G., Sidhu, T.S.: Reliability and availability analysis of IEC 61850 based substation communication architectures. In: Power & Energy Society General Meeting, 2009. PES ‘09. IEEE, pp. 1–8, 26–30 July 2009Google Scholar
  21. 21.
    Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G.P.: Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inf. 7(4), 529–539 (2011)CrossRefGoogle Scholar
  22. 22.
    Zaballos, A., Vallejo, A., Selga, J.M.: Heterogeneous communication architecture for the smart grid. IEEE Netw. 25(5), 30–37 (2011)CrossRefGoogle Scholar
  23. 23.
    Zhang, R., Zhao, Z., Chen, X.: An overall reliability and security assessment architecture for electric power communication network in smart grid. In: 2010 International Conference on Power System Technology (POWERCON), pp. 1–6, 24–28 Oct 2010Google Scholar
  24. 24.
    Moslehi, K., Kumar, R.: A reliability perspective of the smart grid. IEEE Trans. Smart Grid 1(1), 57–64 (2010)CrossRefGoogle Scholar
  25. 25.
    McDaniel, P., McLaughlin, S.: Security and privacy challenges in the smart grid. IEEE Secur. Priv. 7(3), 75–77 (2009)CrossRefGoogle Scholar
  26. 26.
    Venkitasubramaniam, P., Tong, L.: Anonymous networking with minimum latency in multihop networks. IEEE Symposium on Security and Privacy, 2008. SP 2008, pp. 18–32, 18–22 May 2008Google Scholar
  27. 27.
    Doshi, B., Harshavardhana, P.: Broadband network infrastructure of the future: roles of network design tools in technology deployment strategies. IEEE Commun. Mag. 36, 60–71 (1998)CrossRefGoogle Scholar
  28. 28.
    To, M., Neusy, P.: Unavailability analysis of long-haul networks. IEEE J. Sel. Areas Commun. 12, 100–109 (1994)Google Scholar
  29. 29.
    Singel, R.: Fiber optic cable cuts isolate millions from internet, future cuts likely wired. (2008). Accessed January 2008
  30. 30.
    Hachman, M.: Sabotage suspected in silicon valley cable cut PCMag.,2817,2344762,00.asp (2009) . Accessed 9 April 2009
  31. 31.
    Farley, J.: Bremerton fiber optic cable cut knocks out service for wave broadband customers.
  32. 32.
    Zhang-shen, R., Mckeown, N.: Designing a predictable internet backbone with valiant load-balancing. IWQoS 2005, 178–192 (2005)Google Scholar
  33. 33.
    Raza, K., Turner, M.: CCIE Professional Development Large-Scale IP Network Solutions. Cisco Press, Indianapolis (1999)Google Scholar
  34. 34.
    Iniewski, K., McCrosky, C., Minoli, D.: Network Infrastructure and Architecture: Designing High-Availability Networks. Wiley, New York (2008)CrossRefGoogle Scholar
  35. 35.
    Riaz, T.: SQoS based planning for network infrastructures. Ph.D. thesis (2008)Google Scholar
  36. 36.
    Grover, W.D.: Mesh-Based Survivable Networks, Options and Strategies for Optical, MPLS, SONET and ATM Network, vol. 1. Prentice Hall PTR, Upper Saddle River (2003)Google Scholar
  37. 37.
    Ecobilan: FTTH solutions for a sustainable development (2008)Google Scholar
  38. 38.
    Madsen, O.B., Knudsen, T.P., Pedersen, J.M.: SQOS as the base for next generation global infrastructure. In: Proceedings of IT&T 2003, Information Technology and Telecommunications Annual Conference 2003, pp. 127–136 (2003)Google Scholar
  39. 39.
    Caenegem, B.V., Parys, W.V., Turck, F.D., Demeester, P.: Dimensioning of survivable wdm networks. IEEE J. Sel. Areas in Commun. 16, 1146–1157 (1998)CrossRefGoogle Scholar
  40. 40.
    Gutierrez, J.M., Katrinis, K., Georgakilas, K., Tzanakaki, A., Madsen, O.B.: Increasing the cost-constrained availability of WDM networks with degree-3 structured topologies. In: 12th International Conference on Transparent Optical Networks (ICTON), 2010, pp. 1–4 (2010)Google Scholar
  41. 41.
    Rados, I.: Availability analysis and comparison of different wdm systems. J. Telecommun. Inf. Technol. 1, 114–119 (2007)Google Scholar
  42. 42.
    Zhou, L., Held, M., Sennhauser, U.: Connection availability analysis of shared backup path-protected mesh networks. J. Lightwave Technol. 25, 1111–1119 (2007)CrossRefGoogle Scholar
  43. 43.
    Booker, G., Sprintson, A., Zechman, E., Singh, C., Guikema, S.: Efficient traffic loss evaluation for transport backbone networks. Comput. Netw. 54, 1683–1691 (2010)CrossRefGoogle Scholar
  44. 44.
    He, W., Somani, A.K.: Path-based protection for surviving double-link failures in mesh-restorable optical networks. In: Proceedings of IEEE Globecom 2003 (2003)Google Scholar
  45. 45.
    Gutierrez, J.M., Riaz, T., Pedersen, J.M.: Cost and availability analysis of 2- and 3-connected WDM networks physical interconnection. In: Proceedings in ICNC 2012 (2012)Google Scholar
  46. 46.
    Hansen, M.B., Olsen, R.L., Schwefel, H.-P.: Probabilistic models for access strategies to dynamic information elements. Perform. Eval. 67(1), 43 (2010)Google Scholar
  47. 47.
    Schwefel, H.-P., Hansen, M.B., Olsen, R.L.: Adaptive Caching strategies for Context Management systems, PIMRC07, Athens, Sept 2007Google Scholar
  48. 48.
    Shawky, A., Olsen, R., Pedersen, J., Schwefel, H.: Network Aware Dynamic Context Subscription Management, Computer Networks, vol. 58, pp. 239–253. 15 January 2014, ISSN 1389-1286.
  49. 49.
    Hald, S.L.N., Pedersen, J.M.: The Threat of Digital Hacker Sabotage to Critical Infrastructure. Submitted for GIIS 2012 (2012)Google Scholar
  50. 50.
    Hald, S.L.N., Pedersen, J.M.: An updated taxonomy for characterizing hackers according to their threat properties. In: 14th International Conference on Advanced Communication Technology (ICACT) 2012, IEEE (2011). ISBN 978-8955191639Google Scholar
  51. 51.
    Moteff, J.: Risk Management and Critical Infra-structure Protection: Assessing, Integrating, and Managing Threats, Vulnerabilities and Consequences. Congressional Research Service, Washington D.C. (2005)Google Scholar
  52. 52.
    Devost, M.G.: Current and emerging threats to information technology systems and critical infra-structures. Glob. Bus. Brief. (2000)Google Scholar
  53. 53.
    The White House: The National Strategy to Secure Cyberspace, p. 5. The White House, Washington D.C. (2003)Google Scholar
  54. 54.
    Vatis, M.A.: Cyber Attacks During the War on Terrorism: A Predictive Analysis. Institute for Security, Dartmouth College, Hanover (2001)Google Scholar
  55. 55.
    Shea, Dana A.: Critical Infrastructure: Control Systems and the Terrorist Threat. Congressional Research Service, Washington D.C. (2004). Google Scholar
  56. 56.
    Lewis, James A.: Cybersecurity and Critical Infrastructure Protection. Center for Strategic and International Studies, Washington D.C. (2006)CrossRefGoogle Scholar
  57. 57.
    Rogers, M.: A two-dimensional circumplex approach to the development of a hacker taxonomy. Digit. Investig. 3(97–102), 2006 (2006)Google Scholar
  58. 58.
    Rollins, J., Wilson, C.: Terrorist Capabilities for Cyberattack: Overview and Policy Issues. Congressional Research Service, Washington D.C. (2007)Google Scholar
  59. 59.
    Hunt, J.: Stuxnet, Security, and Taking Charge, Industrial Ethernet Book Issue 62/53, IEB Media GbR, Germany (2011). ISSN 1470-5745Google Scholar
  60. 60.
    Eronen, J., Karjalainen, K., et al.: Software vulnerability vs. critical infrastructure—a case study of antivirus software. Int. J. Adv. Secur. 2(1) (2009). ISSN 1942-2636 (International Academy, Research, and Industry Association)Google Scholar
  61. 61.
    Department of Homeland Security: National Cybersecurity and Communications Integration Center Bulletin: Assessment of Anonymous Threat to Control Systems. Department of Homeland Security, Washington D.C. (2011)Google Scholar
  62. 62.
    Anonymous, youranonnews: Available at (2012)
  63. 63.
    Antonatos, S., Akriditis, P., et al.: Defending Against Hitlist Worms Using Network Address Space Randomization, WORM ‘05, ACM 1-59593-229-1/05/0011, USA (2005)Google Scholar
  64. 64.
    Lai, S.-C., Kuo, W.-C., et al.: Defending against Internet worm-like infestations. In: Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04), ISSN 0-7695-2051-0/04, IEEE (2004)Google Scholar
  65. 65.
    Keeney, M., Cappelli, D., et al.: Insider Threat Study: Computer System Sabotage in Critical Infrastructure Sectors. United States Secret Service and Carnegie Mellon Software Engineering Institute, Washington D.C. (2005)Google Scholar
  66. 66.
    Capelli, D., Moore, A., et al.: Common Sense Guide to Prevention and Detection of Insider Threats, 3rd edn. Version 3.1, Software Engineering Institute, Carnegie Mellon University (2009)Google Scholar
  67. 67.
    Hernandez, J.A., Phillips, I.W.: Weibull mixture model to characterise end-to-end Internet delay at coarse time-scales. IEE Proc. Commun. 153(2), 295–304 (2006). doi: 10.1049/ip-com:20050335
  68. 68.
    Bolot, J.-C.: Characterizing end-to-end packet delay and loss in the Internet. J. High Speed Netw. IOS Press. ISSN 0926-6801 (Print), 1875-8940 (Online), Comput. Sci. Netw. Secur. 2(3), 305–323 (1993)Google Scholar
  69. 69.
    Bovy, C.J., Mertodimedjo, H.T., Hooghiemstra, G., Uijterwaal, H., Van Mieghem, P.: Analysis of end-to-end delay measurements in Internet. In: Proceedings of the Passive and Active Measurement Workshop-PAM 2002 (2002)Google Scholar
  70. 70.
    Klima-, Energi- og Bygningsministeriet, HOVEDRAPPORT for Smart Grid Netværkets arbejde, available online at
  71. 71.
    ECOGRID Bornholm: Official website

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rasmus L. Olsen
    • 1
    Email author
  • Kartheepan Balachandran
    • 1
  • Sara Hald
    • 1
  • Jose Gutierrez Lopez
    • 1
  • Jens Myrup Pedersen
    • 1
  • Matija Stevanovic
    • 1
  1. 1.The Faculty of Engineering and Science, Department of Electronic SystemsAalborg UniversityAalborgDenmark

Personalised recommendations