Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 565))

Abstract

The electric power system is one of the largest and most complex infrastructures and it is critical to the operation of society and other infrastructures. The power system is undergoing deep changes which result in new monitoring and control challenges in its own operation, and in unprecedented coupling with other infrastructures, in particular communications and the other energy grids. This Chapter provides an overview of this transformation, starting from the primary causes through the technical challenges, and some perspective solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin, M.: Automation, control, and complexity: An integrated approach. In: Samad & Weyrauch (eds.) Wiley, pp. 263–286 (2000)

    Google Scholar 

  2. Monti, A., Ponci, F.: The Complexity of Smart Grid. IEEE Smart Grid e-Newsletter, May 2012

    Google Scholar 

  3. Future Internet for Smart Energy (Finseny): Future Internet PPP, FP7. http://www.fi-ppp-finseny.eu/

  4. Future Internet Smart Utility Services (Finesce): Future Internet PPP, FP7. http://www.finesce.eu/

  5. Ericsen, T.: The second electronic revolution (It´s all about control). IEEE Trans. Ind. Appl. 46(5), 1778–1786 (2010)

    Article  Google Scholar 

  6. Molitor, C., Benigni, A., Helmedag, A., Chen, K., Cali, D., Jahangiri, P., Muller, D., Monti, A.: Multi-physics test bed for renewable energy systems in smart homes. IEEE Trans. Ind. Electron. 60(3), 1235–1248 (2013)

    Article  Google Scholar 

  7. Karlsson, D., Hemmingsson, M., Lindahl, S.: Wide area system monitoring and control—terminology, phenomena, and solution implementation strategies. IEEE Power Energy Mag. 2(5), 68–76 (2004)

    Article  Google Scholar 

  8. Atanackovic, D., Clapauch, J.H., Dwernychuk, G., Gurney, J., Lee, H.: First steps to wide area control. IEEE Power Energy Mag. 6(1), 61–68 (2008)

    Article  Google Scholar 

  9. Chakrabarti, S., Kyriakides, E., Bi, T., Cai, D., Terzija, V.: Measurements get together. IEEE Power Energy Mag. 7(1), 41–49 (2009)

    Article  Google Scholar 

  10. Data provided by ENTSO-E. http://www.entsoe.eu

  11. Fraunhofer Institute for solar energy systems ISE – Electricity production from solar and wind in Germany. http://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/stromproduktion-aus-solar-und-windenergie-2012.pdf (2013)

  12. http://www.iec.ch/smartgrid/background/explained.htm

  13. http://energy.gov/oe/downloads/smart-grid-introduction-0

  14. http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/expert_group1.pdf

  15. NIST Special Publication 1108 NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0. http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf. Accessed Jan 2010

  16. http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/2011_03_01_mandate_m490_en.pdf

  17. ftp://ftp.cencenelec.eu/CENELEC/Smartgrid/SmartGridFinalReport.pdf

    Google Scholar 

  18. Della Giustina, D., Pau, M., Pegoraro, P.A., Ponci, F., Sulis, S.: Distribution system state estimation: Measurement issues and challenges. IEEE Instrum. Meas. Mag. (2014)

    Google Scholar 

  19. Machowski, J., Bialek, J.W., Bumby J.R.: Power System Dynamics: Stability and Control. Wiley, New York (2008)

    Google Scholar 

  20. Continental Europe Operation Handbook, © ENTSO-E (2014)

    Google Scholar 

  21. Abur, A., Exposito, A.G.: Power System State Estimation, Theory and Implementation. Marcel Dekker, Inc., New York (2004)

    Google Scholar 

  22. IEEE Standard for Synchrophasor Measurements for Power Systems (IEEE Std. 37.118.1-2011) and IEEE Standard for Synchrophasor Data Transfer for Power Systems (IEEE Std. 37.118.2-2011)

    Google Scholar 

  23. IEEE Guide for Synchronization, Calibration, Testing, and Installation of Phasor Measurement Units (PMUs) for Power System Protection and Control (IEEE Std. C37.242-2013)

    Google Scholar 

  24. Lira, R., Mycock, C., Wilson D., Kang, H.: PMU performance requirements and validation for closed loop applications. In 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–7, Manchester, UK (2011)

    Google Scholar 

  25. Junqi, L., Benigni, A., Obradovic, D., Hirche, S., Monti, A.: State estimation and branch current learning using independent local Kalman filter with virtual disturbance model. IEEE Trans. Instrum. Meas. 60(9), 3026–3034 (2011)

    Article  Google Scholar 

  26. Baran, M.E., El-Markabi, I.M.: A multi-agent based dispatching scheme for distributed generators for voltage support of distribution feeders. IEEE Trans. Power Syst. 22(1), 52–59 (2007)

    Article  Google Scholar 

  27. Monti, A., Ponci, F., Benigni, A., Liu, J.: Distributed intelligence for smart grid control. In: 2010 International School on Nonsinusoidal Currents and Compensation (ISNCC), pp. 46–58. Lagow, Poland (2010)

    Google Scholar 

  28. Marwali, M.N., Keyhani, A.: Control of distributed generation systems—part I: Voltages and currents control. IEEE Trans. Ind. Electron. 19(6), 1541–1550 (2004)

    Google Scholar 

  29. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)

    Article  Google Scholar 

  30. Macken, K.J.P., Vanthournout, K., Van den Keybus, J., Deconinck, G., Belmans, R.J.M.: Distributed control of renewable generation units with integrated active filter. IEEE Trans. Power Electron. 19(5), 1353–1360 (2004)

    Article  Google Scholar 

  31. Tuladhar, A., Hua, J., Unger, T., Mauch, K.: Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans. Ind. Appl. 36(1), 131–138 (2000)

    Article  Google Scholar 

  32. Karlsson, P., Svensson, J.: DC bus voltage control for a distributed power system. IEEE Trans. Power Electron. 18(6), 1405–1412 (2003)

    Article  Google Scholar 

  33. Xie, S., Xie, L., Wang, Y., Guo, G.: Decentralized control of multimachine power systems with guaranteed performance. IEE Proc. Control Theory Appl. 147(3), 355–365 (2000)

    Article  Google Scholar 

  34. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., Wright, S.J.: Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Control Syst. Technol. 16(6), 1192–1206 (2008)

    Article  Google Scholar 

  35. Negenborn, R.R.: Multi-agent model predictive control with applications to Power networks. Doctoral Dissertation, TU Delft (2007)

    Google Scholar 

  36. De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., Belmans, R.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107–1115 (2007)

    Article  Google Scholar 

  37. Liu, J., Obadovic, D., Monti, A.: Decentralized LQG control with online set-point adaptation for parallel power converter systems. In: IEEE Energy Conversion Congress and Exposition (ECCE 2010), pp. 3174–3179. Atlanta, GA, USA (2010)

    Google Scholar 

  38. Liu, J.: Cooperative control of distributed power grids using a multi-agent systems approach. Master thesis, Technische Universität München (2009)

    Google Scholar 

  39. Gusrialdi, A., Hirche, S.: Performance-oriented communication topology design for large-scale interconnected systems. In: 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp. 5707–5713 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Monti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monti, A., Ponci, F. (2015). Electric Power Systems. In: Kyriakides, E., Polycarpou, M. (eds) Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems. Studies in Computational Intelligence, vol 565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44160-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44160-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44159-6

  • Online ISBN: 978-3-662-44160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics