Skip to main content

The Periodic Decomposition Problem

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 102))

Abstract

If a function \(f:\mathbb {R}\rightarrow \mathbb {R}\) can be represented as the sum of \(n\) periodic functions as \(f=f_1+\cdots +f_n\) with \(f(x+\alpha _j)=f(x)\) (\(j=1,\dots ,n\)), then it also satisfies a corresponding nth order difference equation \(\Delta _{\alpha _1}\dots \Delta _{\alpha _n} f=0\). The periodic decomposition problem asks for the converse implication, which may hold or fail depending on the context (on the system of periods, on the function class in which the problem is considered, etc.). The problem has natural extensions and ramifications in various directions, and is related to several other problems in real analysis, Fourier and functional analysis. We give a survey about the available methods and results, and present a number of intriguing open problems. Most results have already appeared elsewhere, while the recent results of [7, 8] are under publication. We give only some selected proofs, including some alternative ones which have not been published, give substantial insight into the subject matter, or reveal connections to other mathematical areas. Of course this selection reflects our personal judgment. All other proofs are omitted or only sketched.

Dedicated to Imre Z. Ruzsa on the occasion of his 60th birthday.

Bálint Farkas was supported in part by the Hungarian National Foundation for Scientific Research, Project #K-100461, Szilárd Gy Révész was supported in part by the Hungarian National Foundation for Scientific Research, Project #’s K-81658, K-100461, NK-104183, K-109789.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bazit, R.B.: Generalization of two theorems of M.I. Kadets concerning the indefinite integral of abstract almost periodic functions. Matematicheskie Zametki 9(3), 311–321 (1971)

    MathSciNet  Google Scholar 

  2. Besicovitch, A.S.: Almost Periodic Functions. Dover Publications Inc., New York (1955)

    MATH  Google Scholar 

  3. Day, M.M.: Fixed-point theorems for compact convex sets. Ill. J. Math. 5, 585–590 (1961)

    MATH  Google Scholar 

  4. Edgar, G.A., Rosenblatt, J.M.: Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc. 253, 273–289 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory. Graduate Text in Mathematics. Springer, Berlin (2013, In Press)

    Google Scholar 

  6. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    Google Scholar 

  7. Farkas, B.: A Bohl-Bohr-Kadets type theorem characterizing Banach spaces not containing \(c_0\) (2013). (Submitted); arxiv:1301.6250

  8. Farkas, B.: A note on the periodic decomposition problem for semigroups (2014). (Submitted); arxiv:1401.1226

  9. Farkas, B., Harangi, V., Keleti, T.: Révész, Sz.: Invariant decomposition of functions with respect to commuting invertible transformations. Proc. Amer. Math. Soc. 136(4), 1325–1336 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farkas, B.: Révész, Sz.: Decomposition as the sum of invariant functions with respect to commuting transformations. Aequationes Math. 73(3), 233–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fonf, V.P., Lin, M., Wojtaszczyk, P.: Ergodic characterizations of reflexivity of banach spaces. J. Funct. Anal. 187(1), 146–162 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fonf, V.P., Lin, M., Wojtaszczyk, P.: A non-reflexive banach space with all contractions mean ergodic. Isr. J. Math. 179, 479–491 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gajda, Z.: Note on decomposition of bounded functions into the sum of periodic terms. Acta Math. Hungar. 59(1–2), 103–106 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. Amer. Math. Soc. Colloquium Publications. American Mathematical Society, Providence, R.I. (1955)

    Google Scholar 

  15. Harangi, V.: Periodic decompositions of functions. Real Anal. Exchange (31st Summer Symposium Conference), 185–188 (2007)

    Google Scholar 

  16. Harangi, V.: Sums of periodic functions. Master’s thesis, Eötvös Loránd Univeristy, Budapest (2007). (In Hungarian)

    Google Scholar 

  17. Harangi, V.: On the uniqueness of periodic decomposition. Fund. Math. 211(3), 225–244 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kadec, M.I.: The integration of almost periodic functions with values in a Banach space. Funkcional. Anal. i Priložen. 3(3), 71–74 (1969)

    MathSciNet  Google Scholar 

  19. Kadets, V.M., Shumyatskiy, B.M.: Averaging technique in the periodic decomposition problem. Mat. Fiz. Anal. Geom. 7(2), 184–195 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Kadets, V.M., Shumyatskiy, B.M.: Additions to the periodic decomposition theorem. Acta Math. Hungar. 90(4), 293–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kahane, J.P.: Lectures on Mean Periodic Functions. Tata Institute, Bombay (1959)

    MATH  Google Scholar 

  22. Károlyi, G., Keleti, T., Kós, G., Ruzsa, I.Z.: Periodic decomposition of integer valued functions. Acta Math. Hungar. 119(3), 227–242 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Keleti, T.: Difference functions of periodic measurable functions. Ph.D. thesis

    Google Scholar 

  24. Keleti, T.: On the differences and sums of periodic measurable functions. Acta Math. Hungar. 75(4), 279–286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Keleti, T.: Periodic decomposition of measurable integer valued functions. Real Anal. Exchange (31st Summer Symposium Conference), 189–193 (2007)

    Google Scholar 

  26. Keleti, T.: Periodic decomposition of measurable integer valued functions. J. Math. Anal. Appl. 337(2), 1394–1403 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Keleti, T. and Kolountzakis, M.: On the determination of sets by their triple correlation in finite cyclic groups. Online J. Anal. Comb. 1, 4, 18 pp. (electronic) (2006)

    Google Scholar 

  28. Laczkovich, M., Révész, Sz: Periodic decompositions of functions. Real Anal. Exch. 13(1), 126–128 (1987)

    Google Scholar 

  29. Laczkovich, M.: Révész, Sz.: Periodic decompositions of continuous functions. Acta Math. Hungar. 54(3–4), 329–341 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Laczkovich, M.: Révész, Sz.: Decompositions into the sum of periodic functions belonging to a given Banach space. Acta Math. Hungar. 55(3–4), 353–363 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Martinez, J., Mazon, J.M.: \(C_0\)-semigroups norm continuous at infinity. Semigroup Forum 52(2), 213–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mortola, S., Peirone, R.: The sum of periodic functions. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2(2), 393–396 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Nagel, R.: Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier (Grenoble) 23(4), 75–87 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  34. Natkaniec, T., Wilczyński, W.: Sums of periodic Darboux functions and measurability. Atti Sem. Mat. Fis. Univ. Modena 51, 369–376 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Schwartz, L.: Théorie générale des fonctions moyenne-périodiques. Ann. Math. 2(48), 857–929 (1947)

    Article  Google Scholar 

  36. Segal, I.E.: Equivalences of measure spaces. Amer. J. Math. 73, 275–313 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  37. Székelyhidi, L.: On mean periodic functions. Aequationes Math. 58(3), 203–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Whitney, H.: On functions with bounded \(n\)th differences. J. Math. Pures Appl. 9(36), 67–95 (1957)

    MathSciNet  Google Scholar 

  39. Wierdl, M.: Continuous functions that can be represented as the sum of finitely many periodic functions. Mat. Lapok 32(1–3), 107–113 (1981/1984)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilárd Gy. Révész .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farkas, B., Révész, S.G. (2014). The Periodic Decomposition Problem. In: AlSharawi, Z., Cushing, J., Elaydi, S. (eds) Theory and Applications of Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44140-4_8

Download citation

Publish with us

Policies and ethics