Skip to main content

Monoid Automata for Displacement Context-Free Languages

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8607)

Abstract

In 2007 Kambites presented an algebraic interpretation of Chomsky-Schützenberger theorem for context-free languages. We solve an analogous task for the class of displacement context-free languages which are equivalent to well-nested multiple context-free languages giving an interpretation of the corresponding theorem for that class in terms of monoid automata. We also show how such automata can be simulated on two stacks, introducing the simultaneous two-stack automaton. We compare different variants of its definition and show their equivalence basing on geometric interpretation of its memory operations.

Keywords

  • Memory Operation
  • Formal Language Theory
  • Identity Language
  • Pushdown Automaton
  • Rational Transduction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The work was partially supported by RFFI grants 11-01-00958a and NSh-1423.2014.1.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44116-9_11
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44116-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berstel, J.: Transductions and context-free languages, vol. 4. Teubner Stuttgart (1979)

    Google Scholar 

  2. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. computer programming and formal languages, pp. 118–161. North-Holland (1963)

    Google Scholar 

  3. Fischer, M.J.: Grammars with macro-like productions. In: IEEE Conference Record of 9th Annual Symposium on Switching and Automata Theory, 1968, pp. 131–142. IEEE (1968)

    Google Scholar 

  4. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? University of Pennsylvania, Moore School of Electrical Engineering, Department of Computer and Information Science (1985)

    Google Scholar 

  5. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer (1997)

    Google Scholar 

  6. Kambites, M.: Formal languages and groups as memory. Communications in Algebra 37(1), 193–208 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Kanazawa, M.: A prefix-correct Earley recognizer for multiple context-free grammars. In: Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+ 9), pp. 49–56 (2008)

    Google Scholar 

  8. Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Kanazawa, M.: Multi-dimensional trees and a Chomsky-Schützenberger-Weir representation theorem for simple context-free tree grammars. Technical report (2013)

    Google Scholar 

  10. Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 666–674. Association for Computational Linguistics (2012)

    Google Scholar 

  11. Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages with an application to optimality theory. Theoretical Computer Science 354(1), 82–97 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Lallement, G.: Semigroups and combinatorial applications. John Wiley & Sons, Inc. (1979)

    Google Scholar 

  13. Nivat, M., Perrot, J.F.: Une généralisation du monoıde bicyclique. CR Acad. Sci. Paris Sér. A 271, 824–827 (1970)

    MATH  MathSciNet  Google Scholar 

  14. Pollard, C.: Generalized phrase structure grammars, head grammars, and natural languages. PhD thesis, Stanford University, Stanford (1984)

    Google Scholar 

  15. Roach, K.: Formal properties of head grammars. Mathematics of Language, 293–348 (1987)

    Google Scholar 

  16. Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages. Word, Language, Grammar, vol. 1. Springer, New York (1997)

    MATH  Google Scholar 

  17. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions on Information and Systems 91(2), 209–221 (2008)

    CrossRef  Google Scholar 

  18. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Sorokin, A.: Normal forms for multiple context-free languages and displacement Lambek grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 319–334. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  20. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Tree adjoining and head wrapping. In: Proceedings of the 11th coference on Computational linguistics, pp. 202–207. Association for Computational Linguistics (1986)

    Google Scholar 

  21. Weir, D.J.: Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of Pennsylvania (1988)

    Google Scholar 

  22. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  23. Zetzsche, G.: On the capabilities of grammars, automata, and transducers controlled by monoids. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 222–233. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  24. Zetzsche, G.: Silent transitions in automata with storage. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 434–445. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sorokin, A. (2014). Monoid Automata for Displacement Context-Free Languages. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds) Pristine Perspectives on Logic, Language, and Computation. ESSLLI ESSLLI 2013 2012. Lecture Notes in Computer Science, vol 8607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44116-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44116-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44115-2

  • Online ISBN: 978-3-662-44116-9

  • eBook Packages: Computer ScienceComputer Science (R0)