Skip to main content

A Generalization of Modal Frame Definability

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8607)

Abstract

A class of Kripke frames is called modally definable if there is a set of modal formulas such that the class consists exactly of frames on which every formula from that set is valid, i.e. globally true under any valuation. Here, existential definability of Kripke frame classes is defined analogously, by demanding that each formula from a defining set is satisfiable under any valuation. The notion of modal definability is then generalized by combining these two. Model theoretic characterizations of these types of definability are given.

Keywords

  • modal logic
  • model theory
  • modal definability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44116-9_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44116-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)

    Google Scholar 

  2. Chang, C.C., Keisler, H.J.: Model Theory. Elsevier (1990)

    Google Scholar 

  3. de Rijke, M., Sturm, H.: Global Definability in Basic Modal Logic. In: Wansing, H. (ed.) Essays on Non-classical Logic. World Scientific Publishers (2001)

    Google Scholar 

  4. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic. In: Crossley, J. (ed.) Algebra and Logic, pp. 163–173. Springer (1974)

    Google Scholar 

  5. Goranko, V., Passy, S.: Using the Universal Modality: Gains and Questions. Journal of Logic and Computation 2, 5–30 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Goranko, V., Vakarelov, D.: Sahlqvist Formulas in Hybrid Polyadic Modal Logics. Journal of Logic and Computation 11, 737–754 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Hollenberg, M.: Characterizations of Negative Definability in Modal Logic. Studia Logica 60, 357–386 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Perkov, T., Vuković, M.: Some characterization and preservation theorems in modal logic. Annals of Pure and Applied Logic 163, 1928–1939 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Perkov, T.: Towards a generalization of modal definability. In: Lassiter, D., Slavkovik, M. (eds.) New Directions in Logic, Language, and Computation. LNCS, vol. 7415, pp. 130–139. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  10. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logic. In: Kanger, S. (ed.) Proceedings of the Third Scandinavian Logic Symposium, Uppsala 1973, pp. 110–143. North-Holland, Amsterdam (1975)

    CrossRef  Google Scholar 

  11. van Benthem, J.: The range of modal logic. Journal of Applied Non-Classical Logics 9, 407–442 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Venema, Y.: Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic 58, 1003–1034 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perkov, T. (2014). A Generalization of Modal Frame Definability. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds) Pristine Perspectives on Logic, Language, and Computation. ESSLLI ESSLLI 2013 2012. Lecture Notes in Computer Science, vol 8607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44116-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44116-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44115-2

  • Online ISBN: 978-3-662-44116-9

  • eBook Packages: Computer ScienceComputer Science (R0)