Skip to main content

Argument Mapping for Mathematics in Proofscape

  • Conference paper
  • 857 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8578)

Abstract

The Proofscape argument mapping system for mathematical proofs is introduced. Proofscape supports argument mapping for informal proofs of the kind used by working mathematicians, and its purpose is to aid in the comprehension of existing proofs in the mathematical literature. It supports the provision of further clarification for large inference steps, which is available on demand when a proof is explored interactively through the Proofscape browser, and theory-wide exploration is possible by expanding and collapsing cited lemmas and theorems interactively. We examine how an argument map makes the structure of a proof immediately clear, and facilitates switching attention between the detailed level and the big picture. Proofscape is at http://proofscape.org.

Keywords

  • argument mapping
  • informal proofs
  • theory exploration

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44043-8_10
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44043-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiedijk, F.: Formal proof sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Lamport, L.: How to write a proof. The American Mathematical Monthly 102(7), 600–608 (1995)

    MathSciNet  CrossRef  Google Scholar 

  3. Cairns, P., Gow, J.: A theoretical analysis of hierarchical proofs. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 175–187. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Leron, U.: Structuring mathematical proofs. The American Mathematical Monthly 90(3), 174–185 (1983)

    MathSciNet  CrossRef  Google Scholar 

  5. Harrell, M.: Using argument diagramming software in the classroom. Teaching Philosophy 28(2), 163–177 (2005)

    CrossRef  Google Scholar 

  6. Gordon, T.F., Walton, D.: The Carneades argumentation framework. Frontiers in Artificial Intelligence and Applications 144, 195 (2006)

    Google Scholar 

  7. Van Gelder, T.: Argument mapping with reason!able. The American Philosophical Association Newsletter on Philosophy and Computers 2(1), 85–90 (2002)

    Google Scholar 

  8. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge (1969)

    Google Scholar 

  9. Siekmann, J., et al.: LΩUI: Lovely Ωmega User Interface. Formal Aspects of Computing 11, 326–342 (1999)

    CrossRef  Google Scholar 

  10. Watabe, T., Miyazaki, Y.: Visualization of logical structure in mathematical proofs for learners. In: Lee, R. (ed.) Computer and Information Science 2012. SCI, vol. 429, pp. 197–208. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Alcock, L.: e-proofs: Online resources to aid understanding of mathematical proofs. MSOR Connections 9(4), 7–10 (2009)

    CrossRef  Google Scholar 

  12. Mihǎilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kieffer, S. (2014). Argument Mapping for Mathematics in Proofscape. In: Dwyer, T., Purchase, H., Delaney, A. (eds) Diagrammatic Representation and Inference. Diagrams 2014. Lecture Notes in Computer Science(), vol 8578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44043-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44043-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44042-1

  • Online ISBN: 978-3-662-44043-8

  • eBook Packages: Computer ScienceComputer Science (R0)