Argument Mapping for Mathematics in Proofscape

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)


The Proofscape argument mapping system for mathematical proofs is introduced. Proofscape supports argument mapping for informal proofs of the kind used by working mathematicians, and its purpose is to aid in the comprehension of existing proofs in the mathematical literature. It supports the provision of further clarification for large inference steps, which is available on demand when a proof is explored interactively through the Proofscape browser, and theory-wide exploration is possible by expanding and collapsing cited lemmas and theorems interactively. We examine how an argument map makes the structure of a proof immediately clear, and facilitates switching attention between the detailed level and the big picture. Proofscape is at


argument mapping informal proofs theory exploration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiedijk, F.: Formal proof sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Lamport, L.: How to write a proof. The American Mathematical Monthly 102(7), 600–608 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cairns, P., Gow, J.: A theoretical analysis of hierarchical proofs. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 175–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Leron, U.: Structuring mathematical proofs. The American Mathematical Monthly 90(3), 174–185 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Harrell, M.: Using argument diagramming software in the classroom. Teaching Philosophy 28(2), 163–177 (2005)CrossRefGoogle Scholar
  6. 6.
    Gordon, T.F., Walton, D.: The Carneades argumentation framework. Frontiers in Artificial Intelligence and Applications 144, 195 (2006)Google Scholar
  7. 7.
    Van Gelder, T.: Argument mapping with reason!able. The American Philosophical Association Newsletter on Philosophy and Computers 2(1), 85–90 (2002)Google Scholar
  8. 8.
    Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge (1969)Google Scholar
  9. 9.
    Siekmann, J., et al.: LΩUI: Lovely Ωmega User Interface. Formal Aspects of Computing 11, 326–342 (1999)CrossRefGoogle Scholar
  10. 10.
    Watabe, T., Miyazaki, Y.: Visualization of logical structure in mathematical proofs for learners. In: Lee, R. (ed.) Computer and Information Science 2012. SCI, vol. 429, pp. 197–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Alcock, L.: e-proofs: Online resources to aid understanding of mathematical proofs. MSOR Connections 9(4), 7–10 (2009)CrossRefGoogle Scholar
  12. 12.
    Mihǎilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Caulfield School of Information TechnologyMonash UniversityCaulfieldAustralia

Personalised recommendations