Skip to main content

Metal Bioavailability in the Sava River Water

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 31)

Abstract

Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.). This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels.

Keywords

  • Acanthocephalans
  • DGT
  • European chub
  • Metals
  • Metallothioneins

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44034-6_6
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-44034-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Has-Schön E, Bogut I, Strelec I (2006) Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch Environ Contam Toxicol 50:545–551

    CrossRef  Google Scholar 

  2. Langston WJ, Spence SK (1995) Biological factors involved in metal concentrations observed in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester

    Google Scholar 

  3. Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223:234–240

    CAS  CrossRef  Google Scholar 

  4. Olsson P-E, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebiano MJ (eds) Metal metabolism in aquatic environments. Chapman and Hall, London

    Google Scholar 

  5. Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126:S53–S60

    CAS  CrossRef  Google Scholar 

  6. Krča S, Žaja R, Čalić V, Terzić S, Grubešić MS, Ahel M, Smital T (2007) Hepatic biomarker responses to organic contaminants in feral chub (Leuciscus cephalus) – laboratory characterization and field study in the Sava River, Croatia. Environ Toxicol Chem 26:2620–2633

    CrossRef  Google Scholar 

  7. Dragun Z, Podrug M, Raspor B (2009) Combined use of bioindicators and passive samplers for the assessment of river water contamination with metals. Arch Environ Contam Toxicol 57:211–220

    CAS  CrossRef  Google Scholar 

  8. International Network for Acid Prevention (INAP) (2002) Diffusive gradients in thin-films (DGT): a technique for determining bioavailable metal concentrations. http://www.inap.com.au/public_downloads/Research_Projects/Diffusive_Gradients_in_Thin-films.pdf. Accessed 6 May 2013

  9. Dragun Z, Roje V, Mikac N, Raspor B (2009) Preliminary assessment of total dissolved trace metal concentrations in Sava River water. Environ Monit Assess 159:99–110

    CAS  CrossRef  Google Scholar 

  10. Mikac N, Branica M (1994) Input of ionic alkyllead compounds to surface waters. Sci Total Environ 154:39–46

    CAS  CrossRef  Google Scholar 

  11. Dautović J (2006) Metal determination in natural waters using high resolution inductively coupled plasma mass spectrometry (in Croatian). B.Sc. Thesis, Faculty of Science, University of Zagreb

    Google Scholar 

  12. Koukal B, Dominik J, Vignati D, Arpagaus P, Santiago S, Ouddane B, Benaabidate L (2004) Assessment of water quality and toxicity of polluted Rivers Fez and Sebou in the region of Fez (Morocco). Environ Pollut 131:163–172

    CAS  CrossRef  Google Scholar 

  13. Dautović J, Roje V, Kozar S, Fiket Ž, Mikac N (2007) Dissolved trace metals in some rivers and lakes from the Republic of Croatia (in Croatian). In: Croatian waters and European Union – challenges and potentials, Proceedings of 4th Croatian conference on waters, with international participation, Opatija

    Google Scholar 

  14. Elbaz-Poulichet F, Guan DM, Martin J-M (1991) Trace metal behaviour in a highly stratified Mediterranean estuary: the Krka (Yugoslavia). Mar Chem 32:211–224

    CAS  CrossRef  Google Scholar 

  15. European Parliament and the Council of the European Union (EPCEU) (2008) Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC, and amending Directive 2000/60/EC of the European Parliament and of the Council. Off J L 348/84

    Google Scholar 

  16. Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water 12:123–183

    CAS  CrossRef  Google Scholar 

  17. Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400

    CAS  CrossRef  Google Scholar 

  18. Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–547

    CAS  CrossRef  Google Scholar 

  19. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. IUPAC, Wiley, New York

    Google Scholar 

  20. Davison W, Zhang H (2002) In situ measurement of labile species in water and sediments using DGT. In: Varney MS (ed) Chemical sensors in oceanography. Taylor & Francis, London

    Google Scholar 

  21. Dragun Z, Raspor B, Roje V (2008) The labile metal concentrations in Sava River water assessed by diffusive gradients in thin films. Chem Spec Bioavailab 20:33–46

    CAS  CrossRef  Google Scholar 

  22. Santschi PH, Bower P, Nyffeler UP, Azevedq A, Broecker WS (1983) Estimates of the resistance to chemical transport posed by the deep-sea boundary layer. Limnol Oceanogr 28:899–912

    CAS  CrossRef  Google Scholar 

  23. Gimpel J, Zhang H, Hutchinson W, Davison W (2001) Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique. Anal Chim Acta 448:93–103

    CAS  CrossRef  Google Scholar 

  24. Terek B (2004) Comparison of river discharge measurements by conventional current meter and acoustic Doppler current profiler. In: Morell M (ed) Proceedings of the conference on water observation and information system for decision support (BALWOIS 2004), 25–29 May 2004. EC, IRD France, Ministry of environment and physical planning, Republic of Macedonia, Ohrid

    Google Scholar 

  25. Harrison RM (1995) Understanding our environment: an introduction to environmental chemistry and pollution. The Royal Society of Chemistry, London

    Google Scholar 

  26. Elbaz-Poulichet F, Seidel J-L, Casiot C, Tusseau-Vuillemin M-H (2006) Short-term variability of dissolved trace element concentrations in the Marne and Seine Rivers near Paris. Sci Total Environ 367:278–287

    CAS  CrossRef  Google Scholar 

  27. Sigg L, Xue HB (1994) Metal speciation: concepts, analysis and effects. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht

    Google Scholar 

  28. Garofalo E, Ceradini S, Winter M (2004) The use of diffusive gradients in thin-film (DGT) passive samplers for the measurement of bioavailable metals in river water. Ann Chim Rome 94:515–520

    CAS  CrossRef  Google Scholar 

  29. Sigg L, Black F, Buffle J, Cao J, Cleven R, Davison W, Galceran J, Gunkel P, Kalis E, Kistler D, Martin M, Noël S, Nur Y, Odžak N, Puy J, van Riemsdijk W, Temminghoff E, Tercier-Waeber M-L, Toepperwien S, Town RM, Unsworth E, Warnken KW, Weng L, Xue HB, Zhang H (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Technol 40:1934–1941

    CAS  CrossRef  Google Scholar 

  30. Chovanec A, Hofer R, Schiemer F (2003) Fish as bioindicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors: principles, concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  31. Gandolfi G, Zerunian S, Torricelli P, Marconato A (1991) I pesci delle acque interne italiane. Istituto Poligrafico e Zecca dello Stato, Rome

    Google Scholar 

  32. Vostradovsky J (1973) Freshwater fishes. Hamlyn, London

    Google Scholar 

  33. Maitland PS, Campbell RN (1992) Freshwater fishes of the British Isles. HarperCollins, London

    Google Scholar 

  34. Encina L, Granado-Lorencio C (1997) Seasonal variations in the physiological status and energy content of somatic and reproductive tissues of chub. J Fish Biol 50:511–522

    CrossRef  Google Scholar 

  35. Habeković D, Aničić I, Safner R (1993) Dinamika rasta klena u rijeci Savi. Ihtiofauna dijela rijeke Save. Croat J Fish 48:79–88

    Google Scholar 

  36. Podrug M, Raspor B (2009) Seasonal variation of the metal (Zn, Fe, Mn) and metallothionein concentrations in the liver cytosol of the European chub (Squalius cephalus L.). Environ Monit Assess 157:1–10

    CAS  CrossRef  Google Scholar 

  37. Podrug M, Raspor B, Erk M, Dragun Z (2009) Protein and metal concentrations in two fractions of hepatic cytosol of the European chub (Squalius cephalus L.). Chemosphere 75:843–849

    CAS  CrossRef  Google Scholar 

  38. Dragun Z, Raspor B, Podrug M (2007) The influence of the season and the biotic factors on the cytosolic metal concentrations in the gills of the European chub (Leuciscus cephalus L.). Chemosphere 69:911–919

    CAS  CrossRef  Google Scholar 

  39. Filipović Marijić V, Raspor B (2010) The impact of fish spawning on metal and protein levels in gastrointestinal cytosol of indigenous European chub. Comp Biochem Phys C 152:133–138

    Google Scholar 

  40. Filipović Marijić V, Raspor B (2012) Site-specific gastrointestinal metal variability in relation to the gut content and fish age of indigenous European chub from the Sava River. Water Air Soil Pollut 223:4769–4783

    CrossRef  Google Scholar 

  41. Heath AG (1995) Water pollution and fish physiology. Lewis, Boca Raton

    Google Scholar 

  42. Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337

    CAS  CrossRef  Google Scholar 

  43. Dragun Z, Krasnići N, Strižak Ž, Raspor B (2012) Lead concentration increase in the hepatic and gill soluble fractions of European chub (Squalius cephalus) – an indicator of increased Pb exposure from the river water. Environ Sci Pollut R 19:2088–2095

    CAS  CrossRef  Google Scholar 

  44. Olsvik PA, Gundersen P, Andersen RA, Zachariassen KE (2001) Metal accumulation and metallothionein in brown trout, Salmo trutta, from two Norwegian rivers differently contaminated with Cd, Cu and Zn. Comp Biochem Phys C 128:189–201

    CAS  Google Scholar 

  45. Giguère A, Campbell PGC, Hare L, McDonald DG, Rasmussen JB (2004) Influence of lake chemistry and fish age on Cd, Cu and Zn concentrations in various organs of indigenous yellow perch (Perca flavescens). Can J Fish Aquat Sci 61:1702–1716

    CrossRef  Google Scholar 

  46. Van Campenhout K, Infante HG, Adams F, Blust R (2004) Induction and binding of Cd, Cu, and Zn to metallothionein in carp (Cyprinus carpio) using HPLC-ICP-TOFMS. Toxicol Sci 80:276–287

    CrossRef  Google Scholar 

  47. Filipović Marijić V, Raspor B (2007) Metal exposure assessment in native fish, Mullus barbatus L., from the Eastern Adriatic Sea. Toxicol Lett 168:292–301

    CrossRef  Google Scholar 

  48. Miramand P, Lafaurie M, Fowler SW, Lemaire P, Guary JC, Bentley D (1991) Reproductive cycle and heavy metals in the organs of red mullet, Mullus barbatus (L.), from the northwestern Mediterranean. Sci Total Environ 103:47–56

    CAS  CrossRef  Google Scholar 

  49. Filipović Marijić V, Raspor B (2008) Hepatic metallothionein and metal (Zn, Cu and Cd) variability in relation to reproductive cycle of Mullus barbatus and Merluccius merluccius from the Eastern Adriatic Sea. Fresen Environ Bull 17:705–712

    Google Scholar 

  50. Karadede AH, Ünlü E (2007) Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ Monit Assess 131:323–337

    CrossRef  Google Scholar 

  51. Andres S, Ribeyre F, Tourencq J-N, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25

    CAS  CrossRef  Google Scholar 

  52. Roméo M, Siaub Y, Sidoumou Z, Gnassia-Barelli M (1999) Heavy metal distribution in different fish species from the Mauritania coast. Sci Total Environ 232:169–175

    CrossRef  Google Scholar 

  53. McCoy CP, O’Hara TM, Bennett LW, Boyle CR, Lynn BC (1995) Liver and kidney concentrations of zinc, copper and cadmium in channel catfish (Ictalurus punctatus): variations due to size, season and health status. Vet Hum Toxicol 37:11–15

    CAS  Google Scholar 

  54. Farkas A, Salánki J, Specziár A (2002) Relation between growth and the heavy metal concentration in organs of bream Abramis brama L. populating Lake Balaton. Arch Environ Contam Toxicol 43:236–243

    CAS  CrossRef  Google Scholar 

  55. Lambert Y, Dutil J-D (1997) Can simple condition indices be used to monitor and quantify seasonal changes in the energy reserves of Atlantic cod (Gadus morhua)? Can J Fish Aquat Sci 54:104–112

    CrossRef  Google Scholar 

  56. Sorensen EMB (1991) Metal poisoning in fish. CRC, Boca Raton

    Google Scholar 

  57. Dallinger R, Kautzky H (1985) The importance of contaminated food and uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia 67:82–89

    CrossRef  Google Scholar 

  58. Campbell PGC, Clearwater SJ, Brown PB, Fisher NS, Hogstrand C, Lopez GR, Mayer LM, Meyer JS (2005) Digestive physiology, chemistry and nutrition. In: Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA, Wood CM (eds) Toxicity of dietborne metals to aquatic organisms. Society of Environmental Toxicology and Chemistry (SETAC), Brussels

    Google Scholar 

  59. Clearwater SJ, Baskin SJ, Wood CM, McDonald DG (2000) Gastrointestinal uptake and distribution of copper in rainbow trout. J Exp Biol 203:2455–2466

    CAS  Google Scholar 

  60. Clements KD, Raubenheimer D (2006) Feeding and nutrition. In: Evans DH, Claiborne JB (eds) The physiology of fishes. CRC, Boca Raton

    Google Scholar 

  61. Filipović Marijić V, Raspor B (2014) Relevance of biotic parameters in the assessment of the spatial distribution of gastrointestinal metal and protein levels during spawning period of European chub (Squalius cephalus L.). Environ Sci Pollut R12:7596–7606

    CrossRef  Google Scholar 

  62. Farkas A, Salánki J, Specziár A (2003) Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 37:959–964

    CAS  CrossRef  Google Scholar 

  63. Filipović Marijić V, Raspor B (2006) Age and tissue dependent metallothionein and cytosolic metal distribution in a native Mediterranean fish, Mullus barbatus, from the Eastern Adriatic Sea. Comp Biochem Phys C 143:382–387

    CrossRef  Google Scholar 

  64. Sun L-T, Jeng S-S (1998) Comparative zinc concentrations in tissues of common carp and other aquatic organisms. Zool Stud 37:184–190

    CAS  Google Scholar 

  65. Bury NR, Boyle D, Cooper CA (2012) Iron. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: homeostasis and toxicology of essential metals, vol 31A. Academic, London

    Google Scholar 

  66. Sures B (2001) The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: a review. Aquat Ecol 35:245–255

    CAS  CrossRef  Google Scholar 

  67. Sures B, Siddall R, Taraschewski H (1999) Parasites as accumulation indicators of heavy metal pollution. Parasitol Today 15:16–21

    CAS  CrossRef  Google Scholar 

  68. Filipović Marijić V, Vardić Smrzlić I, Raspor B (2014) Does fish reproduction and metabolic activity influence metal levels in fish intestinal parasites, acanthocephalans, during fish spawning and post-spawning period? Chemosphere 12:449–455

    CrossRef  Google Scholar 

  69. Sures B (2002) Competition for minerals between Acanthocephalus lucii and its definitive host perch (Perca fluviatilis). Int J Parasitol 32:1117–1122

    CAS  CrossRef  Google Scholar 

  70. Kennedy CR (1985) Regulation and dynamics of acanthocephalan population. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge

    Google Scholar 

  71. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland

    Google Scholar 

  72. Siddall R, Sures B (1998) Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and immature worms in chub (Leuciscus cephalus). Parasitol Res 84:573–577

    CAS  CrossRef  Google Scholar 

  73. Sures B, Steiner W, Rydlo M, Taraschewski H (1999) Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee (Austria). Environ Toxicol Chem 18:2574–2579

    CAS  CrossRef  Google Scholar 

  74. Nachev M, Schertzinger G, Sures B (2013) Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasit Vectors 6:1–8

    CrossRef  Google Scholar 

  75. Thielen F, Zimmermann S, Baska F, Taraschewski H, Sures B (2004) The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environ Pollut 129:421–429

    CAS  CrossRef  Google Scholar 

  76. Sures B (2008) Host-parasite interactions in polluted environments. J Fish Biol 73:2133–2142

    CrossRef  Google Scholar 

  77. Filipović Marijić V, Vardić Smrzlić I, Raspor B (2013) Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Sci Total Environ 463–464:772–780

    CrossRef  Google Scholar 

  78. Sures B, Siddall R (1999) Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp Parasitol 93:66–72

    CAS  CrossRef  Google Scholar 

  79. Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    CAS  CrossRef  Google Scholar 

  80. Kay J, Thomas DG, Brown MW, Cryer A, Shurben D, Solbe JF, Garvey JS (1986) Cadmium accumulation and protein binding patterns in tissues of the rainbow trout, Salmo gairdneri. Environ Health Perspect 65:133–139

    CAS  Google Scholar 

  81. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    CAS  CrossRef  Google Scholar 

  82. Hylland K, Nissen-Lie T, Christensen PG, Sandvik M (1998) Natural modulation of hepatic metallothionein and cytochrome P4501 A in flounder, Platichthys flesus, L. Mar Environ Res 46:51–55

    CAS  CrossRef  Google Scholar 

  83. Gorbi S, Baldini C, Regoli F (2005) Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch Environ Contam Toxicol 49:62–70

    CAS  CrossRef  Google Scholar 

  84. Erk M, Ivanković D, Raspor B, Pavičić J (2002) Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta 57:1211–1218

    CAS  CrossRef  Google Scholar 

  85. Raspor B, Paić M, Erk M (2001) Analysis of metallothioneins by the modified Brdička procedure. Talanta 55:109–115

    CAS  CrossRef  Google Scholar 

  86. Van Cleef KA, Kaplan LAE, Crivello JF (2000) The relationship between reproductive status and metallothionein mRNA expression in the common killifish, Fundulus heteroclitus. Environ Biol Fish 57:97–105

    CrossRef  Google Scholar 

  87. Dragun Z, Podrug M, Raspor B (2009) The assessment of natural causes of metallothionein variability in the gills of European chub (Squalius cephalus L.). Comp Biochem Phys C 150:209–217

    Google Scholar 

  88. George SG, Olsson P-E (1994) Metallothioneins as indicators of trace metal pollution. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuaries. CRC, Boca Raton

    Google Scholar 

  89. Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23

    CAS  CrossRef  Google Scholar 

  90. Werner J, Wautier K, Evans RE, Baron CL, Kidd K, Palace V (2003) Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat Toxicol 62:321–328

    CAS  CrossRef  Google Scholar 

  91. Wiener JG, Giesy JP Jr (1979) Concentrations of Cd, Cu, Mn, Pb and Zn in fishes in a highly organic softwater pond. J Fish Res Board Can 36:270–279

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zrinka Dragun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragun, Z., Filipović Marijić, V., Vuković, M., Raspor, B. (2015). Metal Bioavailability in the Sava River Water. In: Milačič, R., Ščančar, J., Paunović, M. (eds) The Sava River. The Handbook of Environmental Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44034-6_6

Download citation