Skip to main content

Apoptosis and Cancer

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Cancer is a worldwide endemic and continues to be one of the most difficult diseases to treat and manage, which may be due to the multifactorial nature of the disease. Cancer generally exhibits considerable genetic complexity and aberrant cell death and survival signaling pathways. Resistance to cell death induction has long been recognized as a hallmark of cancer. Therefore, increased understanding of the underlying molecular events regulating different cell death mechanisms such as apoptosis, necroptosis, and autophagy has provided new possibilities for targeted interference of these pathways. This chapter highlights the significant signaling pathways of apoptosis and the relevant therapeutic targets and summarizes the current state of development of specific modulators of cell death and the overall outcome of this group of novel therapeutics in various phases of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecuit T, Le Goff L. Orchestrating size and shape during morphogenesis. Nature. 2007;450(7167):189–92.

    CAS  PubMed  Google Scholar 

  2. Li W, Baker NE. Engulfment is required for cell competition. Cell. 2007;129(6):1215–25.

    CAS  PubMed  Google Scholar 

  3. Bellamy CO, Malcomson RD, Harrison DJ, Wyllie AH. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol. 1995;6(1):3–16.

    CAS  PubMed  Google Scholar 

  4. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol. 2001;2(7):545–50.

    CAS  PubMed  Google Scholar 

  5. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407(6805):796–801.

    CAS  PubMed  Google Scholar 

  6. Clarke PG, Clarke S. Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol. 1996;193(2):81–99.

    CAS  PubMed  Google Scholar 

  7. Clarke PG, Clarke S. Nineteenth century research on cell death. Exp Oncol. 2012;34(3):139–45.

    CAS  PubMed  Google Scholar 

  8. Lockshin RA, Williams CM. Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123–33.

    CAS  PubMed  Google Scholar 

  9. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Horvitz HR. Nobel lecture. Worms, life and death. Biosci Rep. 2003;23(5–6):239–303.

    CAS  PubMed  Google Scholar 

  11. Green DR, Evan GI. A matter of life and death. Cancer Cell. 2002;1(1):19–30.

    CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  13. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456–62.

    CAS  PubMed  Google Scholar 

  14. Vaux DL, Flavell RA. Apoptosis genes and autoimmunity. Curr Opin Immunol. 2000;12(6):719–24.

    CAS  PubMed  Google Scholar 

  15. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802–9.

    CAS  PubMed  Google Scholar 

  16. Kerr JF, Searle J. A suggested explanation for the paradoxically slow growth rate of basal-cell carcinomas that contain numerous mitotic figures. J Pathol. 1972;107(1):41–4.

    CAS  PubMed  Google Scholar 

  17. Steel GG. Cell loss as a factor in the growth rate of human tumours. Eur J Cancer. 1967;3(4):381–7.

    CAS  PubMed  Google Scholar 

  18. Iversen OH. Kinetics of cellular proliferation and cell loss in human carcinomas. A discussion of methods available for in vivo studies. Eur J Cancer. 1967;3(4):389–94.

    CAS  PubMed  Google Scholar 

  19. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013–26.

    CAS  PubMed  Google Scholar 

  21. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    CAS  PubMed  Google Scholar 

  22. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182(5):1545–56.

    CAS  PubMed  Google Scholar 

  23. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–6.

    CAS  PubMed  Google Scholar 

  25. Schutze S, Tchikov V, Schneider-Brachert W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol. 2008;9(8):655–62.

    PubMed  Google Scholar 

  26. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254(3):439–59.

    CAS  PubMed  Google Scholar 

  27. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    CAS  PubMed  Google Scholar 

  28. Ishii N, Wadsworth WG, Stern BD, Culotti JG, Hedgecock EM. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron. 1992;9(5):873–81.

    CAS  PubMed  Google Scholar 

  29. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10(9):239.

    PubMed Central  PubMed  Google Scholar 

  30. Mehlen P, Furne C. Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell Mol Life Sci CMLS. 2005;62(22):2599–616.

    CAS  Google Scholar 

  31. Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C, et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell. 2010;40(6):863–76.

    CAS  PubMed  Google Scholar 

  32. Chatfield K, Eastman A. Inhibitors of protein phosphatases 1 and 2A differentially prevent intrinsic and extrinsic apoptosis pathways. Biochem Biophys Res Commun. 2004;323(4):1313–20.

    CAS  PubMed  Google Scholar 

  33. Deng X, Gao F, May WS. Protein phosphatase 2A inactivates Bcl2’s antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding. Blood. 2009;113(2):422–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2(3):183–92.

    CAS  PubMed  Google Scholar 

  35. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem. 1999;274(32):22532–8.

    CAS  PubMed  Google Scholar 

  36. Cho KR, Fearon ER. DCC: linking tumor suppressor genes and altered cell surface interactions in cancer? Curr Opin Genet Dev. 1995;5(1):72–8.

    CAS  PubMed  Google Scholar 

  37. Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW, Vogelstein B. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev. 1994;8(10):1174–83.

    CAS  PubMed  Google Scholar 

  38. Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A. 2001;98(6):3416–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.

    CAS  PubMed  Google Scholar 

  40. Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 1997;277(5329):1109–13.

    CAS  PubMed  Google Scholar 

  41. Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, et al. The patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol. 2009;11(6):739–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fombonne J, Bissey PA, Guix C, Sadoul R, Thibert C, Mehlen P. Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proc Natl Acad Sci U S A. 2012;109(26):10510–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem. 1997;272(41):25719–23.

    CAS  PubMed  Google Scholar 

  44. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276(10):7320–6.

    CAS  PubMed  Google Scholar 

  45. Janicke RU, Ng P, Sprengart ML, Porter AG. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem. 1998;273(25):15540–5.

    CAS  PubMed  Google Scholar 

  46. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357–60.

    CAS  PubMed  Google Scholar 

  47. Ferreira KS, Kreutz C, Macnelly S, Neubert K, Haber A, Bogyo M, et al. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis Int J Programmed Cell Death. 2012;17(5):503–15.

    CAS  Google Scholar 

  48. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997;278(5336):294–8.

    CAS  PubMed  Google Scholar 

  50. Cosulich SC, Horiuchi H, Zerial M, Clarke PR, Woodman PG. Cleavage of rabaptin-5 blocks endosome fusion during apoptosis. EMBO J. 1997;16(20):6182–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990;70(4):1029–65.

    CAS  PubMed  Google Scholar 

  52. Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, et al. Proteolysis of fodrin (Non-erythroid Spectrin) during apoptosis. J Biol Chem. 1995;270(12):6425–8.

    CAS  PubMed  Google Scholar 

  53. Cryns VL, Bergeron L, Zhu H, Li H, Yuan J. Specific cleavage of α-fodrin during fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1β-converting enzyme/ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. J Biol Chem. 1996;271(49):31277–82.

    CAS  PubMed  Google Scholar 

  54. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6(1):56–68.

    CAS  PubMed  Google Scholar 

  55. Wen L-P, Fahrni JA, Troie S, Guan J-L, Orth K, Rosen GD. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem. 1997;272(41):26056–61.

    CAS  PubMed  Google Scholar 

  56. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol CB. 1997;7(3):202–10.

    CAS  Google Scholar 

  57. Brzeska H, Knaus UG, Wang Z-Y, Bokoch GM, Korn ED. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc Natl Acad Sci. 1997;94(4):1092–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997;276(5318):1571–4.

    CAS  PubMed  Google Scholar 

  59. Porter AG, Ng P, Janicke RU. Death substrates come alive. Bioessays News Rev Mol Cell Dev Biol. 1997;19(6):501–7.

    CAS  Google Scholar 

  60. Benchoua A, Couriaud C, Guegan C, Tartier L, Couvert P, Friocourt G, et al. Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2. J Biol Chem. 2002;277(37):34217–22.

    CAS  PubMed  Google Scholar 

  61. Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem. 1999;274(43):30651–6.

    CAS  PubMed  Google Scholar 

  62. Widlak P, Garrard WT. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 2005;94(6):1078–87.

    CAS  PubMed  Google Scholar 

  63. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 2000;256(1):50–7.

    CAS  PubMed  Google Scholar 

  64. Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, Grajeda JP, Melendez-Zajgla J. Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res. 2008;27:48.

    PubMed Central  PubMed  Google Scholar 

  65. James D, Parone PA, Terradillos O, Lucken-Ardjomande S, Montessuit S, Martinou JC. Mechanisms of mitochondrial outer membrane permeabilization. Novartis Found Symp. 2007;287:170–6; discussion 6–82.

    CAS  PubMed  Google Scholar 

  66. Lipton SA, Bossy-Wetzel E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell. 2002;111(2):147–50.

    CAS  PubMed  Google Scholar 

  67. Low RL. Mitochondrial endonuclease G function in apoptosis and mtDNA metabolism: a historical perspective. Mitochondrion. 2003;2(4):225–36.

    CAS  PubMed  Google Scholar 

  68. David KK, Sasaki M, Yu SW, Dawson TM, Dawson VL. EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ. 2006;13(7):1147–55.

    CAS  PubMed  Google Scholar 

  69. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem. 2002;277(1):432–8.

    CAS  PubMed  Google Scholar 

  70. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.

    CAS  PubMed  Google Scholar 

  71. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B. Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci CMLS. 2012;69(11):1787–97.

    CAS  Google Scholar 

  72. Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008;9(7):532–42.

    CAS  PubMed  Google Scholar 

  73. Scorrano L. Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol. 2009;41(10):1875–83.

    CAS  PubMed  Google Scholar 

  74. Tsujimoto Y. Stress-resistance conferred by high level of bcl-2 alpha protein in human B lymphoblastoid cell. Oncogene. 1989;4(11):1331–6.

    CAS  PubMed  Google Scholar 

  75. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3(11):697–707.

    CAS  PubMed  Google Scholar 

  76. Uren RT, Dewson G, Chen L, Coyne SC, Huang DC, Adams JM, et al. Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. J Cell Biol. 2007;177(2):277–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 2008;4(5):600–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.

    CAS  PubMed  Google Scholar 

  79. Brenner C, Grimm S. The permeability transition pore complex in cancer cell death. Oncogene. 2006;25(34):4744–56.

    CAS  PubMed  Google Scholar 

  80. Zamzami N, Larochette N, Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ. 2005;12 Suppl 2:1478–80.

    CAS  PubMed  Google Scholar 

  81. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 2003;22(17):4385–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 2012;19(1):42–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002;3(6):401–10.

    CAS  PubMed  Google Scholar 

  84. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388(6639):300–4.

    CAS  PubMed  Google Scholar 

  85. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 1997;16(23):6914–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998;17(8):2215–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000;406(6798):855–62.

    CAS  PubMed  Google Scholar 

  88. Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102(1):43–53.

    CAS  PubMed  Google Scholar 

  90. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–21.

    CAS  PubMed  Google Scholar 

  91. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 2002;277(1):439–44.

    CAS  PubMed  Google Scholar 

  92. van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 2002;9(1):20–6.

    PubMed  Google Scholar 

  93. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408(6815):1004–8.

    CAS  PubMed  Google Scholar 

  94. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408(6815):1008–12.

    CAS  PubMed  Google Scholar 

  95. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410(6824):112–6.

    CAS  PubMed  Google Scholar 

  96. Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol. 2002;9(6):436–41.

    CAS  PubMed  Google Scholar 

  97. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem. 2000;275(4):2581–8.

    CAS  PubMed  Google Scholar 

  98. Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem. 2000;267(18):5699–710.

    CAS  PubMed  Google Scholar 

  99. Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N, et al. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem. 2003;278(34):31469–72.

    CAS  PubMed  Google Scholar 

  100. Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, et al. Proteome-wide identification of HtrA2/Omi substrates. J Proteome Res. 2007;6(3):1006–15.

    CAS  PubMed  Google Scholar 

  101. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001;410(6828):549–54.

    CAS  PubMed  Google Scholar 

  102. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412(6842):95–9.

    CAS  PubMed  Google Scholar 

  103. Gerschenson M, Houmiel KL, Low RL. Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria. Nucleic Acids Res. 1995;23(1):88–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sevrioukova IF. Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal. 2011;14(12):2545–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, et al. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ. 2001;8(12):1136–42.

    PubMed  Google Scholar 

  106. Zhang J, Ye J, Altafaj A, Cardona M, Bahi N, Llovera M, et al. EndoG links Bnip3-induced mitochondrial damage and caspase-independent DNA fragmentation in ischemic cardiomyocytes. PLoS One. 2011;6(3):e17998.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, et al. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183(4):1533–44.

    CAS  PubMed  Google Scholar 

  108. Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, et al. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 1997;186(1):25–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med. 1999;189(2):381–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol. 2002;158(3):507–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Park YC, Jeong JH, Park KJ, Choi HJ, Park YM, Jeong BK, et al. Sulindac activates nuclear translocation of AIF, DFF40 and endonuclease G but not induces oligonucleosomal DNA fragmentation in HT-29 cells. Life Sci. 2005;77(16):2059–70.

    CAS  PubMed  Google Scholar 

  112. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    CAS  PubMed  Google Scholar 

  114. Prasad S, Ravindran J, Aggarwal BB. NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336(1–2):25–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Abbadie C, Kabrun N, Bouali F, Smardova J, Stehelin D, Vandenbunder B, et al. High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell. 1993;75(5):899–912.

    CAS  PubMed  Google Scholar 

  116. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 1999;18(3):747–57.

    CAS  PubMed  Google Scholar 

  117. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998;1(4):543–51.

    CAS  PubMed  Google Scholar 

  118. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med. 1999;5(5):554–9.

    CAS  PubMed  Google Scholar 

  119. Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci: Off J Soc Neurosci. 1999;19(10):4023–33.

    CAS  Google Scholar 

  120. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–63.

    CAS  PubMed  Google Scholar 

  121. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-κB activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol. 2003;171(1):88–95.

    CAS  PubMed  Google Scholar 

  122. Wang CY, Guttridge DC, Mayo MW, Baldwin Jr AS. NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol. 1999;19(9):5923–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A. 1997;94(19):10057–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–3.

    CAS  PubMed  Google Scholar 

  125. Deveraux QL, Reed JC. IAP family proteins–suppressors of apoptosis. Genes Dev. 1999;13(3):239–52.

    CAS  PubMed  Google Scholar 

  126. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998;188(1):211–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    CAS  PubMed  Google Scholar 

  128. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell. 2003;3(1):17–22.

    CAS  PubMed  Google Scholar 

  129. Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood. 1998;92(9):3018–24.

    CAS  PubMed  Google Scholar 

  130. Shin MS, Park WS, Kim SY, Kim HS, Kang SJ, Song KY, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol. 1999;154(6):1785–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Lee SH, Shin MS, Park WS, Kim SY, Dong SM, Pi JH, et al. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res. 1999;59(13):3068–72.

    CAS  PubMed  Google Scholar 

  132. Lee SH, Shin MS, Park WS, Kim SY, Kim HS, Han JY, et al. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene. 1999;18(25):3754–60.

    CAS  PubMed  Google Scholar 

  133. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem. 1997;272(41):25417–20.

    CAS  PubMed  Google Scholar 

  134. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol CB. 1997;7(12):1003–6.

    CAS  Google Scholar 

  135. El-Naggar AK, Coombes MM, Batsakis JG, Hong WK, Goepfert H, Kagan J. Localization of chromosome 8p regions involved in early tumorigenesis of oral and laryngeal squamous carcinoma. Oncogene. 1998;16(23):2983–7.

    CAS  PubMed  Google Scholar 

  136. Emi M, Fujiwara Y, Nakajima T, Tsuchiya E, Tsuda H, Hirohashi S, et al. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res. 1992;52(19):5368–72.

    CAS  PubMed  Google Scholar 

  137. Kagan J, Stein J, Babaian RJ, Joe YS, Pisters LL, Glassman AB, et al. Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene. 1995;11(10):2121–6.

    CAS  PubMed  Google Scholar 

  138. Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet. 1997;15(Spec No):417–74.

    CAS  PubMed  Google Scholar 

  139. Monni O, Joensuu H, Franssila K, Knuutila S. DNA copy number changes in diffuse large B-cell lymphoma–comparative genomic hybridization study. Blood. 1996;87(12):5269–78.

    CAS  PubMed  Google Scholar 

  140. Yaremko ML, Kutza C, Lyzak J, Mick R, Recant WM, Westbrook CA. Loss of heterozygosity from the short arm of chromosome 8 is associated with invasive behavior in breast cancer. Genes Chromosomes Cancer. 1996;16(3):189–95.

    CAS  PubMed  Google Scholar 

  141. Wistuba II, Behrens C, Virmani AK, Milchgrub S, Syed S, Lam S, et al. Allelic losses at chromosome 8p21-23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res. 1999;59(8):1973–9.

    CAS  PubMed  Google Scholar 

  142. Pai SI, Wu GS, Ozoren N, Wu L, Jen J, Sidransky D, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res. 1998;58(16):3513–8.

    CAS  PubMed  Google Scholar 

  143. Lee SH, Shin MS, Kim HS, Lee HK, Park WS, Kim SY, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res. 1999;59(22):5683–6.

    CAS  PubMed  Google Scholar 

  144. Lee SH, Shin MS, Kim HS, Lee HK, Park WS, Kim SY, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene. 2001;20(3):399–403.

    CAS  PubMed  Google Scholar 

  145. Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 2001;61(13):4942–6.

    CAS  PubMed  Google Scholar 

  146. Gallmeier E, Bader DC, Kriegl L, Berezowska S, Seeliger H, Goke B, et al. Loss of TRAIL-receptors is a recurrent feature in pancreatic cancer and determines the prognosis of patients with no nodal metastasis after surgery. PLoS One. 2013;8(2):e56760.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Lorea CF, Moreno DA, Borges KS, Martinelli Jr CE, Antonini SR, de Castro M, et al. Expression profile of apoptosis-related genes in childhood adrenocortical tumors: low level of expression of BCL2 and TNF genes suggests a poor prognosis. Eur J Endocrinol/ Eur Fed Endocr Soc. 2012;167(2):199–208.

    CAS  Google Scholar 

  148. Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T, et al. CIP2A inhibits PP2A in human malignancies. Cell. 2007;130(1):51–62.

    CAS  PubMed  Google Scholar 

  149. Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 2009;1795(1):1–15.

    CAS  PubMed  Google Scholar 

  150. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247(4938):49–56.

    CAS  PubMed  Google Scholar 

  151. Fearon ER. DCC: is there a connection between tumorigenesis and cell guidance molecules? Biochim Biophys Acta. 1996;1288(2):M17–23.

    PubMed  Google Scholar 

  152. Andrews GA, Xi S, Pomerantz RG, Lin CJ, Gooding WE, Wentzel AL, et al. Mutation of p53 in head and neck squamous cell carcinoma correlates with Bcl-2 expression and increased susceptibility to cisplatin-induced apoptosis. Head Neck. 2004;26(10):870–7.

    PubMed  Google Scholar 

  153. Ikegaki N, Katsumata M, Minna J, Tsujimoto Y. Expression of bcl-2 in small cell lung carcinoma cells. Cancer Res. 1994;54(1):6–8.

    CAS  PubMed  Google Scholar 

  154. Monni O, Joensuu H, Franssila K, Klefstrom J, Alitalo K, Knuutila S. BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood. 1997;90(3):1168–74.

    CAS  PubMed  Google Scholar 

  155. Fels C, Schafer C, Huppe B, Bahn H, Heidecke V, Kramm CM, et al. Bcl-2 expression in higher-grade human glioma: a clinical and experimental study. J Neurooncol. 2000;48(3):207–16.

    CAS  PubMed  Google Scholar 

  156. Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. Sci World J. 2012;2012:838916.

    Google Scholar 

  157. Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC. Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol. 2003;4(3):211–8.

    PubMed  Google Scholar 

  158. Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC, et al. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood. 1998;92(1):234–40.

    CAS  PubMed  Google Scholar 

  159. Hermine O, Haioun C, Lepage E, D’Agay MF, Briere J, Lavignac C, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87(1):265–72.

    CAS  PubMed  Google Scholar 

  160. Hill ME, MacLennan KA, Cunningham DC, Vaughan Hudson B, Burke M, Clarke P, et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National Lymphoma Investigation Study. Blood. 1996;88(3):1046–51.

    CAS  PubMed  Google Scholar 

  161. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(20):4021–31; quiz 4250.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Masago K, Togashi Y, Fujita S, Nagai H, Sakamori Y, Okuda C, et al. Effect of the BCL2 gene polymorphism on survival in advanced-stage non-small cell lung cancer patients who received chemotherapy. Oncology. 2013;84(4):214–8.

    CAS  PubMed  Google Scholar 

  163. Brimmell M, Mendiola R, Mangion J, Packham G. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene. 1998;16(14):1803–12.

    CAS  PubMed  Google Scholar 

  164. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275(5302):967–9.

    CAS  PubMed  Google Scholar 

  165. McConkey DJ, Chandra J, Wright S, Plunkett W, McDonnell TJ, Reed JC, et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol. 1996;156(7):2624–30.

    CAS  PubMed  Google Scholar 

  166. Pepper C, Bentley P, Hoy T. Regulation of clinical chemoresistance by bcl-2 and bax oncoproteins in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1996;95(3):513–7.

    CAS  PubMed  Google Scholar 

  167. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258(6):479–517.

    CAS  PubMed  Google Scholar 

  168. Son JW, Kang HK, Chae MH, Choi JE, Park JM, Lee WK, et al. Polymorphisms in the caspase-8 gene and the risk of lung cancer. Cancer Genet Cytogenet. 2006;169(2):121–7.

    CAS  PubMed  Google Scholar 

  169. Bethke L, Sullivan K, Webb E, Murray A, Schoemaker M, Auvinen A, et al. The common D302H variant of CASP8 is associated with risk of glioma. Cancer Epidemiol Biomarkers Prev. 2008;17(4):987–9.

    CAS  PubMed  Google Scholar 

  170. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39(3):352–8.

    CAS  PubMed  Google Scholar 

  171. Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007;39(5):605–13.

    CAS  PubMed  Google Scholar 

  172. Wang M, Zhang Z, Tian Y, Shao J, Zhang Z. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter associated with risk and progression of bladder cancer. Clin Cancer Res. 2009;15(7):2567–72.

    CAS  PubMed  Google Scholar 

  173. Zhang L, Ming L, Yu J. BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat. 2007;10(6):207–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Sarela AI, Macadam RC, Farmery SM, Markham AF, Guillou PJ. Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut. 2000;46(5):645–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Krajewska M, Krajewski S, Banares S, Huang X, Turner B, Bubendorf L, et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res. 2003;9(13):4914–25.

    CAS  PubMed  Google Scholar 

  176. Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem. 2001;276(5):3238–46.

    CAS  PubMed  Google Scholar 

  177. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol CB. 2000;10(21):1359–66.

    CAS  Google Scholar 

  178. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    CAS  PubMed  Google Scholar 

  179. Lane DP, Goh AM. How p53 wields the scales of fate: arrest or death? Transcription. 2012;3(5):240–4.

    PubMed Central  PubMed  Google Scholar 

  180. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293–9.

    CAS  PubMed  Google Scholar 

  181. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994;54(12):3131–5.

    CAS  PubMed  Google Scholar 

  182. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4(11):842–9.

    CAS  PubMed  Google Scholar 

  183. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 2000;12(6):611–20.

    CAS  PubMed  Google Scholar 

  184. Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 2002;16(1):33–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999;104(2):155–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5(2):157–63.

    CAS  PubMed  Google Scholar 

  187. El-Deiry WS. Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 2001;8(11):1066–75.

    CAS  PubMed  Google Scholar 

  188. Herbst RS, Mendolson DS, Ebbinghaus S, Gordon MS, O’Dwyer P, Lieberman G, et al. A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer. ASCO Meeting Abstracts. 2006;24(18 suppl):3013.

    Google Scholar 

  189. Ling J, Herbst RS, Mendelson DS, Eckhardt SG, O’Dwyer P, Ebbinghaus S, et al. Apo2L/TRAIL pharmacokinetics in a phase 1a trial in advanced cancer and lymphoma. ASCO Meeting Abstracts. 2006;24(18 suppl):3047.

    Google Scholar 

  190. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8(10):782–98.

    CAS  PubMed  Google Scholar 

  191. Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol. 2010;28(17):2839–46.

    CAS  PubMed  Google Scholar 

  192. Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP, et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010;28(9):1527–33.

    CAS  PubMed  Google Scholar 

  193. Yee L, Fanale M, Dimick K, Calvert S, Robins C, Ing J, et al. A phase IB safety and pharmacokinetic (PK) study of recombinant human Apo2L/TRAIL in combination with rituximab in patients with low-grade non-Hodgkin lymphoma. ASCO Meeting Abstracts. 2007;25(18 suppl):8078.

    Google Scholar 

  194. Soria JC, Mark Z, Zatloukal P, Szima B, Albert I, Juhasz E, et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(33):4442–51.

    CAS  PubMed  Google Scholar 

  195. Belada D, Mayer J, Czuczman MS, Flinn IW, Durbin-Johnson B, Bray GL. Phase II study of dulanermin plus rituximab in patients with relapsed follicular non-Hodgkin’s lymphoma (NHL). ASCO Meeting Abstracts. 2010;28(15 suppl):8104.

    Google Scholar 

  196. Mom CH, Verweij J, Oldenhuis CN, Gietema JA, Fox NL, Miceli R, et al. Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase I study. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15(17):5584–90.

    CAS  Google Scholar 

  197. Leong S, Cohen RB, Gustafson DL, Langer CJ, Camidge DR, Padavic K, et al. Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase I and pharmacokinetic study. J Clin Oncol. 2009;27(26):4413–21.

    CAS  PubMed  Google Scholar 

  198. Sun W, Nelson D, Alberts SR, Poordad F, Leong S, Teitelbaum UR, et al. Phase Ib study of mapatumumab in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC) and chronic viral hepatitis. ASCO Meeting Abstracts. 2011;29(4 suppl):261.

    Google Scholar 

  199. Younes A, Vose JM, Zelenetz AD, Smith MR, Burris HA, Ansell SM, et al. A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Br J Cancer. 2010;103(12):1783–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, et al. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer. 2010;102(3):506–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Von Pawel J, Harvey JH, Spigel DR, Dediu M, Reck M, Cebotaru CL, et al. A randomized phase II trial of mapatumumab, a TRAIL-R1 agonist monoclonal antibody, in combination with carboplatin and paclitaxel in patients with advanced NSCLC. ASCO Meeting Abstracts. 2010;28(18 suppl):LBA7501.

    Google Scholar 

  202. Wakelee HA, Patnaik A, Sikic BI, Mita M, Fox NL, Miceli R, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2010;21(2):376–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Merchant MS, Geller JI, Baird K, Chou AJ, Galli S, Charles A, et al. Phase I trial and pharmacokinetic study of lexatumumab in pediatric patients with solid tumors. J Clin Oncol. 2012;30(33):4141–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Camidge DR, Herbst RS, Gordon MS, Eckhardt SG, Kurzrock R, Durbin B, et al. A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(4):1256–63.

    CAS  Google Scholar 

  205. Karapetis CS, Clingan PR, Leighl NB, Durbin-Johnson B, O’Neill V, Spigel DR. Phase II study of PRO95780 plus paclitaxel, carboplatin, and bevacizumab (PCB) in non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts. 2010;28(15 suppl):7535.

    Google Scholar 

  206. Wittebol S, Ferrant A, Wickham NW, Fehrenbacher L, Durbin-Johnson B, Bray GL. Phase II study of PRO95780 plus rituximab in patients with relapsed follicular non-Hodgkin’s lymphoma (NHL). ASCO Meeting Abstracts. 2010;28(15 suppl):e18511.

    Google Scholar 

  207. Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L, et al. A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(23):5883–91.

    CAS  Google Scholar 

  208. Doi T, Murakami H, Ohtsu A, Fuse N, Yoshino T, Yamamoto N, et al. Phase 1 study of conatumumab, a pro-apoptotic death receptor 5 agonist antibody, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;68(3):733–41.

    CAS  PubMed  Google Scholar 

  209. Kindler HL, Garbo L, Stephenson J, Wiezorek J, Sabin T, Hsu M, et al. A phase Ib study to evaluate the safety and efficacy of AMG 655 in combination with gemcitabine (G) in patients (pts) with metastatic pancreatic cancer (PC). ASCO Meeting Abstracts. 2009;27(15S):4501.

    Google Scholar 

  210. Paz-Ares L, Sanchez Torres JM, Diaz-Padilla I, Links M, Reguart N, Boyer M, et al. Safety and efficacy of AMG 655 in combination with paclitaxel and carboplatin (PC) in patients with advanced non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts. 2009;27(15S):e19048.

    Google Scholar 

  211. Saltz L, Infante J, Schwartzberg L, Stephenson J, Rocha-Lima C, Galimi F, et al. Safety and efficacy of AMG 655 plus modified FOLFOX6 (mFOLFOX6) and bevacizumab (B) for the first-line treatment of patients (pts) with metastatic colorectal cancer (mCRC). ASCO Meeting Abstracts. 2009;27(15S):4079.

    Google Scholar 

  212. Demetri GD, Le Cesne A, Chawla SP, Brodowicz T, Maki RG, Bach BA, et al. First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase I/II open-label and double-blind study. Eur J Cancer. 2012;48(4):547–63.

    CAS  PubMed  Google Scholar 

  213. Rougier P, Infante J, Van Laethem J, Stephenson JJ, Uronis H, Schwartzberg L, et al. A phase Ib/II trial of AMG 655 and panitumumab (pmab) for the treatment (tx) of metastatic colorectal cancer (mCRC): Safety results. ASCO Meeting Abstracts. 2009;27(15S):4130.

    Google Scholar 

  214. Kindler HL, Richards DA, Garbo LE, Garon EB, Stephenson Jr JJ, Rocha-Lima CM, et al. A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol. 2012;23(11):2834–42.

    CAS  PubMed  Google Scholar 

  215. Cohn AL, Tabernero J, Maurel J, Nowara E, Sastre J, Chuah BY, et al. A randomized, placebo-controlled phase 2 study of ganitumab or conatumumab in combination with FOLFIRI for second-line treatment of mutant KRAS metastatic colorectal cancer. Ann Oncol. 2013;24(7):1777–85.

    CAS  PubMed  Google Scholar 

  216. Paz-Ares L, Balint B, de Boer RH, van Meerbeeck JP, Wierzbicki R, De Souza P, et al. A randomized phase 2 study of paclitaxel and carboplatin with or without conatumumab for first-line treatment of advanced non-small-cell lung cancer. J Thorac Oncol. 2013;8(3):329–37.

    CAS  PubMed  Google Scholar 

  217. James DF, Castro JE, Loria O, Prada CE, Aguillon RA, Kipps TJ. AT-101, a small molecule Bcl-2 antagonist, in treatment naive CLL patients (pts) with high risk features; preliminary results from an ongoing phase I trial. J Clin Oncol (Meeting Abstracts). 2006;24(18 suppl):6605.

    Google Scholar 

  218. Heist RS, Fain J, Chinnasami B, Khan W, Molina JR, Sequist LV, et al. Phase I/II study of AT-101 with topotecan in relapsed and refractory small cell lung cancer. J Thorac Oncol. 2010;5(10):1637–43.

    PubMed  Google Scholar 

  219. Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, et al. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol. 2011;6(10):1757–60.

    PubMed Central  PubMed  Google Scholar 

  220. Ready N, Karaseva NA, Orlov SV, Luft AV, Popovych O, Holmlund JT, et al. Double-blind, placebo-controlled, randomized phase 2 study of the proapoptotic agent AT-101 plus docetaxel, in second-line non-small cell lung cancer. J Thorac Oncol. 2011;6(4):781–5.

    PubMed  Google Scholar 

  221. Schimmer AD, O’Brien S, Kantarjian H, Brandwein J, Cheson BD, Minden MD, et al. A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(24):8295–301.

    CAS  PubMed  Google Scholar 

  222. O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood. 2009;113(2):299–305.

    PubMed  Google Scholar 

  223. Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, et al. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010;66(6):1079–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Hwang JJ, Kuruvilla J, Mendelson D, Pishvaian MJ, Deeken JF, Siu LL, et al. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res. 2010;16(15):4038–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Paik PK, Rudin CM, Pietanza MC, Brown A, Rizvi NA, Takebe N, et al. A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer. 2011;74(3):481–5.

    PubMed Central  PubMed  Google Scholar 

  226. Oki Y, Copeland A, Hagemeister F, Fayad LE, Fanale M, Romaguera J, et al. Experience with obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist in patients with relapsed or refractory classical Hodgkin lymphoma. Blood. 2012;119(9):2171–2.

    CAS  PubMed  Google Scholar 

  227. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Ott PA, Chang J, Madden K, Kannan R, Muren C, Escano C, et al. Oblimersen in combination with temozolomide and albumin-bound paclitaxel in patients with advanced melanoma: a phase I trial. Cancer Chemother Pharmacol. 2013;71(1):183–91.

    CAS  PubMed  Google Scholar 

  230. Wetzler M, Donohue KA, Odenike OM, Feldman EJ, Hurd DD, Stone RM, et al. Feasibility of administering oblimersen (G3139; Genasense) with imatinib mesylate in patients with imatinib resistant chronic myeloid leukemia–cancer and leukemia group B study 10107. Leuk Lymphoma. 2008;49(7):1274–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Rudin CM, Salgia R, Wang X, Hodgson LD, Masters GA, Green M, et al. Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol. 2008;26(6):870–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24(29):4738–45.

    CAS  PubMed  Google Scholar 

  233. O’Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki A, Koziner B, et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2007;25(9):1114–20.

    PubMed  Google Scholar 

  234. O’Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki AB, Koziner B, et al. Five-year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol. 2009;27(31):5208–12.

    PubMed  Google Scholar 

  235. Chanan-Khan AA, Niesvizky R, Hohl RJ, Zimmerman TM, Christiansen NP, Schiller GJ, et al. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma. 2009;50(4):559–65.

    CAS  PubMed  Google Scholar 

  236. Kane RC, Farrell AT, Sridhara R, Pazdur R. United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res. 2006;12(10):2955–60.

    CAS  PubMed  Google Scholar 

  237. Kane RC, Dagher R, Farrell A, Ko C-W, Sridhara R, Justice R, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18):5291–4.

    CAS  PubMed  Google Scholar 

  238. Cortes J, Thomas D, Koller C, Giles F, Estey E, Faderl S, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004;10(10):3371–6.

    CAS  PubMed  Google Scholar 

  239. Cresta S, Sessa C, Catapano CV, Gallerani E, Passalacqua D, Rinaldi A, et al. Phase I study of bortezomib with weekly paclitaxel in patients with advanced solid tumours. Eur J Cancer. 2008;44(13):1829–34.

    CAS  PubMed  Google Scholar 

  240. Reece DE, Rodriguez GP, Chen C, Trudel S, Kukreti V, Mikhael J, et al. Phase I-II trial of bortezomib plus oral cyclophosphamide and prednisone in relapsed and refractory multiple myeloma. J Clin Oncol. 2008;26(29):4777–83.

    CAS  PubMed  Google Scholar 

  241. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17.

    CAS  PubMed  Google Scholar 

  242. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2006;24(30):4867–74.

    PubMed  Google Scholar 

  243. Mendler JH, Kelly J, Voci S, Marquis D, Rich L, Rossi RM, et al. Bortezomib and gemcitabine in relapsed or refractory Hodgkin’s lymphoma. Ann Oncol. 2008;19(10):1759–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Jatoi A, Dakhil SR, Foster NR, Ma C, Rowland Jr KM, Moore Jr DF, et al. Bortezomib, paclitaxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase II results from the North Central Cancer Treatment Group (N044B). J Thorac Oncol. 2008;3(5):516–20.

    PubMed Central  PubMed  Google Scholar 

  245. Goy A, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol. 2009;20(3):520–5.

    CAS  PubMed  Google Scholar 

  246. Dispenzieri A, Jacobus S, Vesole DH, Callandar N, Fonseca R, Greipp PR. Primary therapy with single agent bortezomib as induction, maintenance and re-induction in patients with high-risk myeloma: results of the ECOG E2A02 trial. Leukemia. 2010;24(8):1406–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.

    CAS  PubMed  Google Scholar 

  248. O’Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, et al. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res. 2009;15(22):7085–91.

    PubMed Central  PubMed  Google Scholar 

  249. Dean E, Jodrell D, Connolly K, Danson S, Jolivet J, Durkin J, et al. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol. 2009;27(10):1660–6.

    CAS  PubMed  Google Scholar 

  250. Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallman MS, et al. Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol. 2009;27(28):4741–6.

    CAS  PubMed  Google Scholar 

  251. Schimmer AD, Herr W, Hanel M, Borthakur G, Frankel A, Horst HA, et al. Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymphoma Myeloma Leuk. 2011;11(5):433–8.

    CAS  PubMed  Google Scholar 

  252. Infante JR, Dees EC, Burris HA, Zawel L, Sager JA, Stevenson C, et al. Abstract 2775: a phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. Cancer Res. 2011;70(8 Suppl):2775.

    Google Scholar 

  253. Dienstmann R, Vidal L, Dees E, Chia S, Mayer E, Porter D, et al. A phase Ib study of LCL161, an oral inhibitor of apoptosis (IAP) antagonist, in combination with weekly paclitaxel in patients with advanced solid tumors. Cancer Res. 2012;72(24 Suppl):P6-11-06.

    Google Scholar 

  254. Sikic BI, Eckhardt SG, Gallant G, Burris HA, Camidge DR, Colevas AD, et al. Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP) inhibitor, in patients (Pts) with advanced solid tumors: results of a phase I study. ASCO Meeting Abstracts. 2011;29(15 suppl):3008.

    Google Scholar 

  255. Amaravadi RK, Schilder RJ, Dy GK, Ma WW, Fetterly GJ, Weng DE, et al. Abstract LB-406: phase 1 study of the smac mimetic TL32711 in adult subjects with advanced solid tumors and lymphoma to evaluate safety, pharmacokinetics, pharmacodynamics, and antitumor activity. Cancer Res. 2011;71(8 Suppl):LB-406.

    Google Scholar 

  256. Tolcher AW, Mita A, Lewis LD, Garrett CR, Till E, Daud AI, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol. 2008;26(32):5198–203.

    CAS  PubMed  Google Scholar 

  257. Satoh T, Okamoto I, Miyazaki M, Morinaga R, Tsuya A, Hasegawa Y, et al. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res. 2009;15(11):3872–80.

    CAS  PubMed  Google Scholar 

  258. Giaccone G, Zatloukal P, Roubec J, Floor K, Musil J, Kuta M, et al. Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol. 2009;27(27):4481–6.

    CAS  PubMed  Google Scholar 

  259. Lewis K, Samlowski W, Ward J, Catlett J, Cranmer L, Kirkwood J, et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest New Drugs. 2011;29(1):161–6.

    CAS  PubMed  Google Scholar 

  260. Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer. 2008;61(1):82–90.

    PubMed  Google Scholar 

  261. Hotte SJ, Hirte HW, Chen EX, Siu LL, Le LH, Corey A, et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res. 2008;14(11):3450–5.

    CAS  PubMed  Google Scholar 

  262. Le LH, Hirte HW, Hotte SJ, Maclean M, Iacobucci A, Corey A, et al. Phase I study of a fully human monoclonal antibody to the tumor necrosis factor-related apoptosis-inducing ligand death receptor 4 (TRAIL-R1) in subjects with advanced solid malignancies or non-Hodgkin’s lymphoma (NHL). ASCO Meeting Abstracts. 2004;22(14 suppl):2533.

    Google Scholar 

  263. Chow LQ, Eckhardt SG, Gustafson DL, O’Bryant C, Hariharan S, Diab S, et al. HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase 1 and PK study. ASCO Meeting Abstracts. 2006;24(18 suppl):2515.

    Google Scholar 

  264. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.

    CAS  PubMed  Google Scholar 

  265. Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 1997;387(6635):773–6.

    CAS  PubMed  Google Scholar 

  266. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–406.

    CAS  PubMed  Google Scholar 

  268. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81.

    CAS  PubMed  Google Scholar 

  269. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644(2–3):229–49.

    CAS  PubMed  Google Scholar 

  270. Kitada S, Kress CL, Krajewska M, Jia L, Pellecchia M, Reed JC. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood. 2008;111(6):3211–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104(49):19512–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Pellecchia M, Reed JC. Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des. 2004;10(12):1387–98.

    CAS  PubMed  Google Scholar 

  273. Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem. 2003;46(20):4259–64.

    CAS  PubMed  Google Scholar 

  274. Stein RC, Joseph AE, Matlin SA, Cunningham DC, Ford HT, Coombes RC. A preliminary clinical study of gossypol in advanced human cancer. Cancer Chemother Pharmacol. 1992;30(6):480–2.

    CAS  PubMed  Google Scholar 

  275. Bushunow P, Reidenberg MM, Wasenko J, Winfield J, Lorenzo B, Lemke S, et al. Gossypol treatment of recurrent adult malignant gliomas. J Neurooncol. 1999;43(1):79–86.

    CAS  PubMed  Google Scholar 

  276. Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K, et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat. 2001;66(3):239–48.

    PubMed  Google Scholar 

  277. Sun Y, Wu J, Aboukameel A, Banerjee S, Arnold AA, Chen J, et al. Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. Cancer Biol Ther. 2008;7(9):1418–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Moreira JN, Santos A, Simoes S. Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev Recent Clin Trials. 2006;1(3):217–35.

    CAS  PubMed  Google Scholar 

  279. Morris MJ, Tong WP, Cordon-Cardo C, Drobnjak M, Kelly WK, Slovin SF, et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res. 2002;8(3):679–83.

    CAS  PubMed  Google Scholar 

  280. Marshall J, Chen H, Yang D, Figueira M, Bouker KB, Ling Y, et al. A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol. 2004;15(8):1274–83.

    CAS  PubMed  Google Scholar 

  281. D’Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol. 2012;44(11):1729–38.

    PubMed  Google Scholar 

  282. Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Inv J Tech Methods Path. 2002;82(8):965–80.

    CAS  Google Scholar 

  283. Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004;1695(1–3):19–31.

    CAS  PubMed  Google Scholar 

  284. Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol. 2003;4(3):192–201.

    CAS  PubMed  Google Scholar 

  285. Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer. 2004;40(15):2217–29.

    CAS  PubMed  Google Scholar 

  286. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458(7237):438–44.

    CAS  PubMed  Google Scholar 

  287. Rolen U, Kobzeva V, Gasparjan N, Ovaa H, Winberg G, Kisseljov F, et al. Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog. 2006;45(4):260–9.

    CAS  PubMed  Google Scholar 

  288. Gilmore TD. Multiple myeloma: lusting for NF-kappaB. Cancer Cell. 2007;12(2):95–7.

    CAS  PubMed  Google Scholar 

  289. Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N, et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol. 2005;206(2):123–34.

    CAS  PubMed  Google Scholar 

  290. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001;107(3):241–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001;61(7):3071–6.

    CAS  PubMed  Google Scholar 

  292. Ludwig H, Khayat D, Giaccone G, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer. 2005;104(9):1794–807.

    CAS  PubMed  Google Scholar 

  293. Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal. 2011;5(2):101–10.

    PubMed Central  PubMed  Google Scholar 

  294. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002;277(19):16639–47.

    CAS  PubMed  Google Scholar 

  295. Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol. 2004;24(22):9695–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Obeng EA, Carlson LM, Gutman DM, Harrington Jr WJ, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107(12):4907–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Yang DT, Young KH, Kahl BS, Markovina S, Miyamoto S. Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer. 2008;7:40.

    PubMed Central  PubMed  Google Scholar 

  298. Markovina S, Callander NS, O’Connor SL, Kim J, Werndli JE, Raschko M, et al. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res MCR. 2008;6(8):1356–64.

    CAS  Google Scholar 

  299. Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD, et al. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res. 2010;70(11):4318–26.

    CAS  PubMed  Google Scholar 

  300. Zhu YX, Tiedemann R, Shi CX, Yin H, Schmidt JE, Bruins LA, et al. RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood. 2011;117(14):3847–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  301. Nawrocki ST, Carew JS, Dunner Jr K, Boise LH, Chiao PJ, Huang P, et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res. 2005;65(24):11510–9.

    CAS  PubMed  Google Scholar 

  302. Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003;278(36):33714–23.

    CAS  PubMed  Google Scholar 

  303. Yu C, Rahmani M, Dent P, Grant S. The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res. 2004;295(2):555–66.

    CAS  PubMed  Google Scholar 

  304. Wolf J, Richardson PG, Schuster M, LeBlanc A, Walters IB, Battleman DS. Utility of bortezomib retreatment in relapsed or refractory multiple myeloma patients: a multicenter case series. Clin Adv Hematol Oncol. 2008;6(10):755–60.

    PubMed  Google Scholar 

  305. Laubach JP, Mitsiades CS, Roccaro AM, Ghobrial IM, Anderson KC, Richardson PG. Clinical challenges associated with bortezomib therapy in multiple myeloma and Waldenstroms Macroglobulinemia. Leuk Lymphoma. 2009;50(5):694–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Ruschak AM, Slassi M, Kay LE, Schimmer AD. Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst. 2011;103(13):1007–17.

    CAS  PubMed  Google Scholar 

  307. Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood. 2009;114(16):3439–47.

    CAS  PubMed  Google Scholar 

  308. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9):3281–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  309. Cossu F, Mastrangelo E, Milani M, Sorrentino G, Lecis D, Delia D, et al. Designing smac-mimetics as antagonists of XIAP, cIAP1, and cIAP2. Biochem Biophys Res Commun. 2009;378(2):162–7.

    CAS  PubMed  Google Scholar 

  310. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7(10):988–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Imre G, Larisch S, Rajalingam K. Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol. 2011;3(6):324–6.

    CAS  PubMed  Google Scholar 

  312. Fandy TE, Shankar S, Srivastava RK. Smac/DIABLO enhances the therapeutic potential of chemotherapeutic drugs and irradiation, and sensitizes TRAIL-resistant breast cancer cells. Mol Cancer. 2008;7:60.

    PubMed Central  PubMed  Google Scholar 

  313. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell. 2007;131(4):669–81.

    CAS  PubMed  Google Scholar 

  314. Talbot DC, Davies J, Callies S, Andre V, Lahn M, Ang J, et al. First human dose study evaluating safety and pharmacokinetics of LY2181308, an antisense oligonucleotide designed to inhibit survivin. ASCO Meeting Abstracts. 2008;26(15 suppl):3518.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Science, Technology and Innovation Malaysia and Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Lan Tan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, M.L., Tan, H.K., Muhammad, T.S.T. (2015). Apoptosis and Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44006-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44006-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44005-6

  • Online ISBN: 978-3-662-44006-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics