Skip to main content

Biobanks – A Source of Large Biological Data Sets: Open Problems and Future Challenges

  • Chapter
Interactive Knowledge Discovery and Data Mining in Biomedical Informatics

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8401))

Abstract

Biobanks are collections of biological samples (e.g. tissues, blood and derivatives, other body fluids, cells, DNA, etc.) and their associated data. Consequently, human biobanks represent collections of human samples and data and are of fundamental importance for scientific research as they are an excellent resource to access and measure biological constituents that can be used to monitor the status and trends of both health and disease. Most -omics data trust on a secure access to these collections of stored human samples to provide the basis for establishing the ranges and frequencies of expression. However, there are many open questions and future challenges associated with the large amounts of heterogeneous data, ranging from pre-processing, data integration and data fusion to knowledge discovery and data mining along with a strong focus on privacy, data protection, safety and security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holzinger, A.: On Knowledge Discovery and Interactive Intelligent Visualization of Biomedical Data - Challenges in Human–Computer Interaction & Biomedical Informatics. In: DATA 2012, pp. 9–20. INSTICC (2012)

    Google Scholar 

  2. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania, R., Schaeffer, M., St Pierre, S., Twigger, S., White, O., Rhee, S.Y.: Big data: The future of biocuration. Nature 455(7209), 47–50 (2008)

    Article  Google Scholar 

  3. Holzinger, A.: Biomedical Informatics: Computational Sciences meets Life Sciences. BoD, Norderstedt (2012)

    Google Scholar 

  4. Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data. Springer, New York (2014)

    Book  MATH  Google Scholar 

  5. Fan, W.: Querying big social data. In: Gottlob, G., Grasso, G., Olteanu, D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol. 7968, pp. 14–28. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Hood, L., Friend, S.H.: Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology 8(3), 184–187 (2011)

    Article  Google Scholar 

  7. Emmert-Streib, F., de Matos Simoes, R., Glazko, G., McDade, S., Haibe-Kains, B., Holzinger, A., Dehmer, M., Campbell, F.: Functional and genetic analysis of the colon cancer network. BMC Bioinformatics 15(suppl. 6), S6 (2014)

    Google Scholar 

  8. Pennisi, E.: Human genome 10th anniversary. Will computers crash genomics? Science 331, 666–668 (2011)

    Article  Google Scholar 

  9. Boguski, M.S., McIntosh, M.W.: Biomedical informatics for proteomics. Nature 422(6928), 233–237 (2003)

    Article  Google Scholar 

  10. Tomita, M., Kami, K.: Systems Biology, Metabolomics, and Cancer Metabolism. Science 336(6084), 990–991 (2012)

    Article  Google Scholar 

  11. Wenk, M.R.: The emerging field of lipidomics. Nature Reviews Drug Discovery 4(7), 594–610 (2005)

    Article  Google Scholar 

  12. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 57–63 (2009)

    Article  Google Scholar 

  13. Egger, G., Liang, G.N., Aparicio, A., Jones, P.A.: Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990), 457–463 (2004)

    Article  Google Scholar 

  14. Egert, M., de Graaf, A.A., Smidt, H., de Vos, W.M., Venema, K.: Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology 14(2), 86–91 (2006)

    Article  Google Scholar 

  15. Winter, G., Kromer, J.O.: Fluxomics - connecting ’omics analysis and phenotypes. Environmental Microbiology 15(7), 1901–1916 (2013)

    Article  Google Scholar 

  16. Houle, D., Govindaraju, D.R., Omholt, S.: Phenomics: the next challenge. Nature Reviews Genetics 11(12), 855–866 (2010)

    Article  Google Scholar 

  17. Sawyers, C.L.: The cancer biomarker problem. Nature 452(7187), 548–552 (2008)

    Article  Google Scholar 

  18. Simeon-Dubach, D., Perren, A.: Better provenance for biobank samples. Nature 475(7357), 454–455 (2011)

    Article  Google Scholar 

  19. Loft, S., Poulsen, H.E.: Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine 74(6), 297–312 (1996)

    Article  Google Scholar 

  20. Hewitt, R., Watson, P.: Defining Biobank. Biopreservation and Biobanking 11(5), 309–315 (2013)

    Article  Google Scholar 

  21. Shaw, D.M., Elger, B.S., Colledge, F.: What is a biobank? Differing definitions among biobank stakeholders. Clinical Genetics 85(3), 223–227 (2014)

    Article  Google Scholar 

  22. Olson, J.E., Ryu, E., Johnson, K.J., Koenig, B.A., Maschke, K.J., Morrisette, J.A., Liebow, M., Takahashi, P.Y., Fredericksen, Z.S., Sharma, R.G., Anderson, K.S., Hathcock, M.A., Carnahan, J.A., Pathak, J., Lindor, N.M., Beebe, T.J., Thibodeau, S.N., Cerhan, J.R.: The Mayo Clinic Biobank: A Building Block for Individualized Medicine. Mayo Clinic Proceedings 88(9), 952–962 (2013)

    Article  Google Scholar 

  23. Akervall, J., Pruetz, B.L., Geddes, T.J., Larson, D., Felten, D.J., Wilson, G.D.: Beaumont Health System BioBank: A Multidisciplinary Biorepository and Translational Research Facility. Biopreservation and Biobanking 11(4), 221–228 (2013)

    Article  Google Scholar 

  24. Riegman, P.H.J., Morente, M.M., Betsou, F., de Blasio, P., Geary, P.: Biobanking for better healthcare. Molecular Oncology 2(3), 213–222 (2008)

    Article  Google Scholar 

  25. Kang, B., Park, J., Cho, S., Lee, M., Kim, N., Min, H., Lee, S., Park, O., Han, B.: Current Status, Challenges, Policies, and Bioethics of Biobanks. Genomics & Informatics 11(4), 211–217 (2013)

    Article  Google Scholar 

  26. Roden, D.M., Pulley, J.M., Basford, M.A., Bernard, G.R., Clayton, E.W., Balser, J.R., Masys, D.R.: Development of a Large-Scale De-Identified DNA Biobank to Enable Personalized Medicine. Clin. Pharmacol. Ther. 84(3), 362–369 (2008)

    Article  Google Scholar 

  27. Kim, H., Yi, B.K., Kim, I.K., Kwak, Y.S.: Integrating Clinical Information in National Biobank of Korea. Journal of Medical Systems 35(4), 647–656 (2011)

    Article  Google Scholar 

  28. Norling, M., Kihara, A., Kemp, S.: Web-Based Biobank System Infrastructure Monitoring Using Python, Perl, and PHP. Biopreservation and Biobanking 11(6), 355–358 (2013)

    Article  Google Scholar 

  29. Holzinger, A., Geierhofer, R., Modritscher, F., Tatzl, R.: Semantic Information in Medical Information Systems: Utilization of Text Mining Techniques to Analyze Medical Diagnoses. J. Univers. Comput. Sci. 14(22), 3781–3795 (2008)

    Google Scholar 

  30. Woodbridge, M., Fagiolo, G., O’Regan, D.P.: MRIdb: Medical Image Management for Biobank Research. J. Digit. Imaging 26(5), 886–890 (2013)

    Article  Google Scholar 

  31. Scudellari, M.: Biobank managers bemoan underuse of collected samples. Nature Medicine 19(3), 253–253 (2013)

    Article  Google Scholar 

  32. Wolf, S.M.: Return of results in genomic biobank research: ethics matters. Genetics in Medicine 15(2), 157–159 (2013)

    Article  Google Scholar 

  33. Sandor, J., Bard, P., Tamburrini, C., Tannsjo, T.: The case of biobank with the law: between a legal and scientific fiction. Journal of Medical Ethics 38(6), 347–350 (2012)

    Article  Google Scholar 

  34. Puchois, P.: Finding ways to improve the use of biobanks. Nat. Med. 19(7), 814–815 (2013)

    Article  Google Scholar 

  35. Paradiso, A., Hansson, M.: Finding ways to improve the use of biobanks. Nat. Med. 19(7), 815–815 (2013)

    Article  Google Scholar 

  36. Marko-Varga, G., Vegvari, A., Welinder, C., Lindberg, H., Rezeli, M., Edula, G., Svensson, K.J., Belting, M., Laurell, T., Fehniger, T.E.: Standardization and Utilization of Biobank Resources in Clinical Protein Science with Examples of Emerging Applications. Journal of Proteome Research 11(11), 5124–5134 (2012)

    Article  Google Scholar 

  37. LaBaer, J.: Improving International Research with Clinical Specimens: 5 Achievable Objectives. Journal of Proteome Research 11(12), 5592–5601 (2012)

    Google Scholar 

  38. Norlin, L., Fransson, M.N., Eriksson, M., Merino-Martinez, R., Anderberg, M., Kurtovic, S., Litton, J.E.: A Minimum Data Set for Sharing Biobank Samples, Information, and Data: MIABIS. Biopreservation and Biobanking 10(4), 343–348 (2012)

    Article  Google Scholar 

  39. Norstedt, I.: Horizon 2020: European perspectives in healthcare sciences and implementation. EPMA Journal 5(suppl. 1), A1 (2014)

    Google Scholar 

  40. Kieseberg, P., Hobel, H., Schrittwieser, S., Weippl, E., Holzinger, A.: Protecting Anonymity in the Data-Driven Medical Sciences. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 303–318. Springer, Heidelberg (2014)

    Google Scholar 

  41. Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.: Combining HCI, Natural Language Processing, and Knowledge Discovery - Potential of IBM Content Analytics as an assistive technology in the biomedical field. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  42. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge Discovery and Interactive Data Mining in Bioinformatics – State-of-the-Art, Future challenges and Research Directions. BMC Bioinformatics 15(suppl. 6) (I1) (2014)

    Google Scholar 

  43. Holzinger, A., Jurisica, I.: Knowledge Discovery and Data Mining in Biomedical Informatics: The future is in Integrative, Interactive Machine Learning Solutions. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 1–18. Springer, Berlin (2014)

    Google Scholar 

  44. Shneiderman, B.: The Big Picture for Big Data: Visualization. Science 343(6172), 730–730 (2014)

    Article  Google Scholar 

  45. Jeanquartier, F., Holzinger, A.: On Visual Analytics and Evaluation In Cell Physiology: A Case Study. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 495–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  46. hci4all.at, http://www.hci4all.at/expert-network-hci-kdd/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huppertz, B., Holzinger, A. (2014). Biobanks – A Source of Large Biological Data Sets: Open Problems and Future Challenges. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics