Skip to main content

The Complexity of Somewhat Approximation Resistant Predicates

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

  • 2654 Accesses

Abstract

A boolean predicate f:{0,1}k → {0,1} is said to be somewhat approximation resistant if for some constant \(\tau > \frac{|f^{-1}(1)|}{2^k}\), given a τ-satisfiable instance of the MAX k-CSP(f) problem, it is NP-hard to find an assignment that strictly beats the naive algorithm that outputs a uniformly random assignment. Let τ(f) denote the supremum over all τ for which this holds. It is known that a predicate is somewhat approximation resistant precisely when its Fourier degree is at least 3. For such predicates, we give a characterization of the hardness gap \((\tau(f) - \frac{|f^{-1}(1)|}{2^k})\) up to a factor of O(k 5). We show that the hardness gap is determined by two factors:

  • The nearest Hamming distance of f to a function g of Fourier degree at most 2, which is related to the Fourier mass of f on coefficients of degree 3 or higher.

  • Whether f is monotonically below g.

When the Hamming distance is small and f is monotonically below g, we give an SDP-based approximation algorithm and hardness results otherwise. We also give a similar characterization of the integrality gap for the natural SDP relaxation of MAX k-CSP(f) after Ω(n) rounds of the Lasserre hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. SIAM J. Comput. 34(1), 67–88 (2005)

    Article  MathSciNet  Google Scholar 

  2. Alekhnovich, M., Razborov, A.: Lower Bounds for Polynomial Calculus: Non-Binomial Case. In: FOCS, pp. 190–199 (2001)

    Google Scholar 

  3. Austrin, P., Khot, S.: A Characterization of Approximation Resistance for Even k-Partite CSPs (2012) (manuscript)

    Google Scholar 

  4. Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Independence. Computational Complexity 18, 249–271 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barto, L., Kozik, M.: Robust satisfiability of constraint satisfaction problems. In: STOC, pp. 931–940 (2012)

    Google Scholar 

  6. Ben-Sasson, E., Impagliazzo, R.: Random CNFs are Hard for the Polynomial Calculus. Computational Complexity 19(4), 501–519 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Sasson, E., Wigderson, A.: Short Proofs are Narrow – Resolution Made Simple. J. ACM 48(2), 149–169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain, J.: On the Distribution of the Fourier Spectrum of Boolean Functions. Israel J. of Math., 269–276 (2002)

    Google Scholar 

  9. Chan, S.O.: Approximation Resistance from Pairwise Independent Subgroups. Electronic Colloquium on Computational Complexity (ECCC) 19, 110 (2012)

    Google Scholar 

  10. Charikar, M., Wirth, A.: Maximizing Quadratic Programs: Extending Grothendieck’s Inequality. In: FOCS, pp. 54–60 (2004)

    Google Scholar 

  11. Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., Smolensky, R.: The Bit Extraction Problem of t-Resilient Functions. In: FOCS, pp. 396–407 (1985)

    Google Scholar 

  12. Friedgut, E.: Boolean Functions With Low Average Sensitivity Depend On Few Coordinates. Combinatorica 18(1), 27–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedgut, E., Kalai, G., Naor, A.: Boolean Functions whose Fourier Transform is Concentrated on the First Two Levels. Advances in Applied Mathematics 29(3), 427–437 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Georgiou, K., Magen, A., Tulsiani, M.: Optimal Sherali-Adams Gaps from Pairwise Independence. In: APPROX-RANDOM, pp. 125–139 (2009)

    Google Scholar 

  15. Guruswami, V., Zhou, Y.: Tight bounds on the approximability of almost-satisfiable horn sat and exact hitting set. In: SODA, pp. 1574–1589 (2011)

    Google Scholar 

  16. Hast, G.: Beating a Random Assignment. PhD thesis, Royal Institute of Technology, Sweden (2005)

    Google Scholar 

  17. Kahn, J., Kalai, G., Linial, N.: The Influence of Variables on Boolean Functions. In: FOCS, pp. 68–80 (1988)

    Google Scholar 

  18. Kindler, G., Safra, S.: Noise-Resistant Boolean-Functions are Juntas (2004), http://www.cs.huji.ac.il/~gkindler/papers/Papers.htm

  19. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. O’Donnell, R.: Lecture notes for analysis of Boolean functions (2012), http://analysisofbooleanfunctions.org

  21. Samorodnitsky, A., Trevisan, L.: A PCP Characterization of NP with Optimal Amortized Query Complexity. In: STOC, pp. 191–199 (2000)

    Google Scholar 

  22. Schaefer, T.J.: The complexity of Satisfiability Problems. In: STOC, pp. 216–226 (1978)

    Google Scholar 

  23. Schoenebeck, G.: Linear Level Lasserre Lower Bounds for Certain k-CSPs. In: FOCS, pp. 593–602 (2008)

    Google Scholar 

  24. Håstad, J.: Some Optimal Inapproximability Results. J. of the ACM, 798–859 (2001)

    Google Scholar 

  25. Håstad, J.: On the Efficient Approximability of Constraint Satisfaction Problems. In: Surveys in Combinatorics, vol. 346, pp. 201–222. Cambridge University Press (2007)

    Google Scholar 

  26. Tulsiani, M.: CSP gaps and Reductions in the Lasserre Hierarchy. In: STOC, pp. 303–312 (2009)

    Google Scholar 

  27. Tulsiani, M., Worah, P.: LS+ Lower Bounds from Pairwise Independence. Electronic Colloquium on Computational Complexity (ECCC) 19, 105 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khot, S., Tulsiani, M., Worah, P. (2014). The Complexity of Somewhat Approximation Resistant Predicates. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics