Skip to main content

Shortest Two Disjoint Paths in Polynomial Time

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

Given an undirected graph and two pairs of vertices (s i ,t i ) for i ∈ {1,2} we show that there is a polynomial time Monte Carlo algorithm that finds disjoint paths of smallest total length joining s i and t i for i ∈ {1,2} respectively, or concludes that there most likely are no such paths at all. Our algorithm applies to both the vertex- and edge-disjoint versions of the problem.

Our algorithm is algebraic and uses permanents over the quotient ring Z 4[X]/(X m) in combination with Mulmuley, Vazirani and Vazirani’s isolation lemma to detect a solution. We develop a fast algorithm for permanents over said ring by modifying Valiant’s 1979 algorithm for the permanent over \(\mathbf{Z}_{2^l}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput. 43(1), 280–299 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, pp. 1747–1753. SIAM 2012 (2012)

    Google Scholar 

  3. Colin de Verdière, E., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar graphs. ACM T. Algorithms 7(2), 19 (2011)

    Google Scholar 

  4. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. 71B(4), 241–245 (1967)

    Article  MathSciNet  Google Scholar 

  5. Eilam–Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math. 85(2), 113–138 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenner, T., Lachish, O., Popa, A.: Min-sum 2-paths problems. In: 11th Workshop on Approximation and Online Algorithms, WAOA 2013, Sophia Antipolis, France, September 5-6 (2013)

    Google Scholar 

  7. Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. Discrete Optim. 7(2), 234–245 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., et al. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Appl. Math. 26(1), 105–115 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ohtsuki, T.: The two disjoint path problem and wire routing design. In: Graph Theory and Algorithms, Proc. 17th Symposium of Research Institute of Electric Communication, Sendai, Japan, October 24-25, 1980, pp. 207–216. Springer (1980)

    Google Scholar 

  12. Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM 27, 445–456 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thomassen, C.: 2-linked graphs. Eur. J. Combin. 1, 371–378 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tholey, T.: Solving the 2-disjoint paths problem in nearly linear time. Theory Comput. Syst. 39(1), 51–78 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22(2), 107–111 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  17. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(1), 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wahlström, M.: Abusing the Tutte matrix: An algebraic instance compression for the K-set-cycle problem. In: 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, Kiel, Germany, February 27-March 2. Schloss Dagstuhl – Leibniz-Zentrum für Informatik LIPIcs, vol. 20, pp. 341–352 (2013)

    Google Scholar 

  19. Williams, R.: Finding paths of length k in O *(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Björklund, A., Husfeldt, T. (2014). Shortest Two Disjoint Paths in Polynomial Time. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics