Star Partitions of Perfect Graphs

  • René van Bevern
  • Robert Bredereck
  • Laurent Bulteau
  • Jiehua Chen
  • Vincent Froese
  • Rolf Niedermeier
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8572)


The partition of graphs into nice subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-hard cases, for example, on grid graphs and chordal graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asdre, K., Nikolopoulos, S.D.: NP-completeness results for some problems on subclasses of bipartite and chordal graphs. Theor. Comput. Sci. 381(1-3), 248–259 (2007)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Berman, F., Johnson, D., Leighton, T., Shor, P.W., Snyder, L.: Generalized planar matching. J. Algorithms 11(2), 153–184 (1990)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    van Bevern, R., Bredereck, R., Chen, J., Froese, V., Niedermeier, R., Woeginger, G.J.: Star partitions of perfect graphs, TU Berlin (2014a) (manuscript) arXiv:1402.2589 [cs.DM]Google Scholar
  4. 4.
    van Bevern, R., Bredereck, R., Chen, J., Froese, V., Niedermeier, R., Woeginger, G.J.: Network-based dissolution, TU Berlin (2014b) (manuscript) arXiv:1402.2664 [cs.DM] Google Scholar
  5. 5.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM (1999)Google Scholar
  6. 6.
    Chalopin, J., Paulusma, D.: Packing bipartite graphs with covers of complete bipartite graphs. Discrete Appl. Math. 168, 40–50 (2014)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cornuéjols, G.: General factors of graphs. J. Combin. Theory Ser. B 45(2), 185–198 (1988)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dahlhaus, E., Karpinski, M.: Matching and multidimensional matching in chordal and strongly chordal graphs. Discrete Appl. Math. 84(1-3), 79–91 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J., Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program. 98(1-3), 477–491 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math. 10(2), 139–153 (1985)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  13. 13.
    Kirkpatrick, D.G., Hell, P.: On the complexity of general graph factor problems. SIAM J. Comput. 12(3), 601–608 (1983)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kosowski, A., Małafiejski, M., Żyliński, P.: Parallel processing subsystems with redundancy in a distributed environment. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 1002–1009. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Małafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Monnot, J., Toulouse, S.: The path partition problem and related problems in bipartite graphs. Oper. Res. Lett. 35(5), 677–684 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)MATHMathSciNetGoogle Scholar
  18. 18.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(1), 343–353 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete Appl. Math. 18(3), 279–292 (1987)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Steiner, G.: On the k-path partition problem in cographs. Congressus Numerantium 147, 89–96 (2000)MATHMathSciNetGoogle Scholar
  21. 21.
    Steiner, G.: On the k-path partition of graphs. Theor. Comput. Sci. 290(3), 2147–2155 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math. 69(3), 247–255 (1996)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yan, J.-H., Chang, G.J., Hedetniemi, S.M., Hedetniemi, S.T.: k-path partitions in trees. Discrete Appl. Math. 78(1-3), 227–233 (1997)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Computer Science Review 1(1), 12–26 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • René van Bevern
    • 1
  • Robert Bredereck
    • 1
  • Laurent Bulteau
    • 1
  • Jiehua Chen
    • 1
  • Vincent Froese
    • 1
  • Rolf Niedermeier
    • 1
  • Gerhard J. Woeginger
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.Department of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations