Skip to main content

Short PCPs with Projection Queries

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We construct a PCP for NTIME(2n) with constant soundness, 2n poly(n) proof length, and poly(n) queries where the verifier’s computation is simple: the queries are a projection of the input randomness, and the computation on the prover’s answers is a 3CNF. The previous upper bound for these two computations was polynomial-size circuits. Composing this verifier with a proof oracle increases the circuit-depth of the latter by 2. Our PCP is a simple variant of the PCP by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (CCC 2005). We also give a more modular exposition of the latter, separating the combinatorial from the algebraic arguments.

If our PCP is taken as a black box, we obtain a more direct proof of the result by Williams, later with Santhanam (CCC 2013) that derandomizing circuits on n bits from a class C in time 2n/n ω(1) yields that NEXP is not in a related circuit class C′. Our proof yields a tighter connection: C is an And-Or of circuits from C′. Along the way we show that the same lower bound follows if the satisfiability of the And of any 3 circuits from C′ can be solved in time 2n/n ω(1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures & Algorithms 3(3), 289–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Spencer, J.H., Erdős, P.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons, Inc. (1992)

    Google Scholar 

  3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to delegatable succinct constraint satisfaction problems. In: ACM Innovations in Theoretical Computer Science Conf. (ITCS), pp. 401–414 (2013)

    Google Scholar 

  4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: ACM Symp. on the Theory of Computing (STOC), pp. 585–594 (2013)

    Google Scholar 

  5. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs verifiable in polylogarithmic time. In: IEEE Conf. on Computational Complexity (CCC), pp. 120–134 (2005)

    Google Scholar 

  6. Blum, N.: A boolean function requiring 3n network size. Theoretical Computer Science 28, 337–345 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J. on Computing 38(2), 551–607 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. on Computing 36(4), 889–974 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cook, S.A.: A hierarchy for nondeterministic time complexity. J. of Computer and System Sciences 7(4), 343–353 (1973)

    Article  MATH  Google Scholar 

  10. Dinur, I.: The PCP theorem by gap amplification. J. of the ACM 54(3), 12 (2007)

    Article  MathSciNet  Google Scholar 

  11. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n − o(n) lower bound on the circuit complexity of affine dispersers. In: Symp. on Math. Foundations of Computer Science (MFCS), pp. 256–265 (2011)

    Google Scholar 

  12. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the PCP theorem. SIAM J. on Computing 36(4), 975–1024 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fefferman, B., Shaltiel, R., Umans, C., Viola, E.: On beating the hybrid argument. Theory of Computing 9, 809–843 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gopalan, P., Meka, R., Reingold, O.: DNF sparsification and a faster deterministic counting algorithm. Computational Complexity 22(2), 275–310 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general. In: IEEE Symp. on Foundations of Computer Science (FOCS), pp. 277–284 (2011)

    Google Scholar 

  16. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. In: IEEE Conf. on Computational Complexity (CCC) (2001)

    Google Scholar 

  17. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. J. of Computer and System Sciences 65(4), 672–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jahanjou, H., Miles, E., Viola, E.: Local reductions (2013), http://www.ccs.neu.edu/home/viola/

  19. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: ACM Symp. on the Theory of Computing (STOC), pp. 302–309 (1980)

    Google Scholar 

  20. Luby, M., Veličković, B., Wigderson, A.: Deterministic approximate counting of depth-2 circuits. In: 2nd Israeli Symposium on Theoretical Computer Science (ISTCS), pp. 18–24 (1993)

    Google Scholar 

  21. Mie, T.: Short pcpps verifiable in polylogarithmic time with o(1) queries. Ann. Math. Artif. Intell. 56(3-4), 313–338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Makino, K., Tamaki, S., Yamamoto, M.: Derandomizing HSSW algorithm for 3-SAT. CoRR, abs/1102.3766 (2011)

    Google Scholar 

  23. NEU. From RAM to SAT (2012), http://www.ccs.neu.edu/home/viola/

  24. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: 22nd ACM Symp. on the Theory of Computing (STOC), pp. 213–223. ACM (1990)

    Google Scholar 

  25. Oliveira, I.C.: Algorithms versus circuit lower bounds. CoRR, abs/1309.0249 (2013)

    Google Scholar 

  26. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic time complexity classes. J. of the ACM 25(1), 146–167 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Santhanam, R., Williams, R.: On medium-uniformity and circuit lower bounds. In: IEEE Conf. on Computational Complexity (CCC) (2013)

    Google Scholar 

  28. Viola, E.: Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates. SIAM J. on Computing 36(5), 1387–1403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Viola, E.: Challenges in computational lower bounds (2013), http://www.ccs.neu.edu/home/viola/

  30. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science 348(2-3), 357–365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: 42nd ACM Symp. on the Theory of Computing (STOC), pp. 231–240 (2010)

    Google Scholar 

  32. Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conf. on Computational Complexity (CCC), pp. 115–125 (2011)

    Google Scholar 

  33. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. SIAM J. on Computing 42(3), 1218–1244 (2013)

    Article  MATH  Google Scholar 

  34. Williams, R.: New algorithms and lower bounds for circuits with linear threshold gates. In: ACM Symp. on the Theory of Computing, STOC (2014)

    Google Scholar 

  35. Zák, S.: A turing machine time hierarchy. Theoretical Computer Science 26, 327–333 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Sasson, E., Viola, E. (2014). Short PCPs with Projection Queries. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics