Rotational Cryptanalysis of Round-Reduced Keccak

  • Paweł Morawiecki
  • Josef Pieprzyk
  • Marian Srebrny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8424)

Abstract

In this paper we attack round-reduced Keccak hash function with a technique called rotational cryptanalysis. We focus on Keccak variants proposed as SHA-3 candidates in the NIST’s contest for a new standard of cryptographic hash function. Our main result is a preimage attack on 4-round Keccak and a 5-round distinguisher on Keccak-\(f\)[1600] permutation — the main building block of Keccak hash function.

Keywords

Preimage attack Keccak Rotational cryptanalysis SHA-3 

References

  1. 1.
    Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luff a and Hamsi. Technical report, NIST mailing list (2009)Google Scholar
  2. 2.
    Bernstein, D.J.: Salsa20. Technical report, eSTREAM, ECRYPT Stream Cipher Project (2005). http://cr.yp.to/snuffle.html
  3. 3.
    Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak? NIST mailing list (2010). http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges. http://sponge.noekeon.org
  5. 5.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document. http://keccak.noekeon.org/Keccak-main-2.1.pdf
  6. 6.
    Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Chernoff, H.: A note on an inequality involving the normal distribution. Ann. Probab. 9, 533–535 (1981)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f permutation. Chin. Sci. Bull. 57, 694–697 (2012)CrossRefGoogle Scholar
  10. 10.
    Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack - application to Keccak. Cryptology ePrint Archive, Report 2011/420 (2011)Google Scholar
  11. 11.
    Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security margin evaluation of SHA-3 contest finalists through SAT-based attacks. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 56–67. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational rebound attacks on reduced Skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Knudsen, L.R., Matusiewicz, K., Thomsen, S.S.: Observations on the Shabal keyed permutation (2009). http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf
  15. 15.
    Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Van Assche, G.: A rotational distinguisher on Shabal’s keyed permutation and its impact on the security proofs. http://gva.noekeon.org/papers/ShabalRotation.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paweł Morawiecki
    • 1
    • 3
  • Josef Pieprzyk
    • 2
  • Marian Srebrny
    • 1
    • 3
  1. 1.Section of InformaticsUniversity of CommerceKielcePoland
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia
  3. 3.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations