# The Two-Parametric Mittag-Leffler Function

• Rudolf Gorenflo
• Anatoly A. Kilbas
• Francesco Mainardi
• Sergei V. Rogosin
Chapter
Part of the Springer Monographs in Mathematics book series (SMM)

## Abstract

In this chapter we present the basic properties of the two-parametric Mittag-Leffler function E α, β (z) (see ()), which is the most straightforward generalization of the classical Mittag-Leffler function E α (z) (see ()).

In this chapter we present the basic properties of the two-parametric Mittag-Leffler function E α, β (z) (see ()), which is the most straightforward generalization of the classical Mittag-Leffler function E α (z) (see ()). As in the previous chapter, the material can be formally divided into two parts. At first, starting from the basic definition of the Mittag-Leffler function as a power series, we discover that, for the first parameter α with positive real part and any complex value of the second parameter β, the function E α, β (z) is an entire function of the complex variable z. Therefore we discuss in the first part the (analytic) properties of the two-parametric Mittag-Leffler function as an entire function. Namely, we calculate its order and type, present a number of formulas relating the two-parametric Mittag-Leffler function to elementary and special functions as well as recurrence relations and differentiation formulas, introduce some useful integral representations and discuss asymptotics and the distribution of zeros of the considered function. An extension of the two-parametric Mittag-Leffler function to values of the first parameter α with non-positive real part is given here too.

It is well-known that in current applications the properties of the two-parametric Mittag-Leffler function of a real variable are often used. Thus, we collect in the second part (Sect. 4.10) results of this type. They concern integral representations and integral transforms of the two-parametric Mittag-Leffler function of a real variable, the complete monotonicity property, and relations to the fractional calculus. People working in applications can, at first reading, omit some of the deeper mathematical material (that from Sects. 4.44.9, say).

## 4.1 Series Representation and Properties of Coefficients

The Mittag-Leffler type function (or the two-parametric Mittag-Leffler function)
$$\displaystyle{ E_{\alpha,\beta }(z) =\sum _{ k=0}^{\infty } \frac{z^{k}} {\varGamma (\alpha k+\beta )}\quad (\alpha > 0,\;\beta \in \mathbb{C}) }$$
(4.1.1)
generalizes the classical Mittag-Leffler function
$$\displaystyle{E_{\alpha }(z) =\sum _{ k=0}^{\infty } \frac{z^{k}} {\varGamma (\alpha k + 1)}\quad (\alpha > 0).}$$
We have $$E_{\alpha,1}(z) = E_{\alpha }(z)$$. For any $$\alpha,\beta \in \mathbb{C}$$, Re α > 0, the function (4.1.1) is an entire function of order ρ = 1∕(Re α) and type 1.
Indeed, let us consider the slightly more general function
$$\displaystyle{ E_{\alpha,\beta }(\sigma ^{\alpha }\,z) =\sum _{ k=0}^{\infty }\frac{\left (\sigma ^{\alpha }\,z\right )^{k}} {\varGamma (\alpha k+\beta )}, }$$
(4.1.2)
i.e. take the coefficients in the form
$$\displaystyle{ c_{k} = \frac{\sigma ^{\alpha k}} {\varGamma \left (\alpha k+\beta \right )}\quad (k = 0,\,1,\,2,\ldots ), }$$
(4.1.3)
where 0 < Re α < +, 0 < σ < + is an arbitrary real constant and β is a complex parameter. By using Stirling’s formula (see, e.g., [Bat-1, 1.18 (3)]) we have
$$\displaystyle{ \varGamma \left (\alpha k+\beta \right ) = \sqrt{2\pi }\left (\alpha k\right )^{\alpha k+\beta -\frac{1} {2} }\,\mathrm{e}^{-\alpha k}\,[1 + o(1)],\quad k \rightarrow \infty }$$
(4.1.4)
and, consequently, for the sequence $$\{c_{k}\}_{0}^{\infty }$$ we immediately obtain
$$\displaystyle{ \lim _{k\rightarrow \infty } \frac{k\log k} {\log \frac{1} {\vert c_{k}\vert }} = \frac{1} {(\mathrm{Re}\,\alpha )} =\rho,\quad \lim _{k\rightarrow \infty }k\vert c_{k}\vert ^{\rho /k} =\mathrm{ e}\rho \sigma. }$$
(4.1.5)
According to a well known theorem in the theory of entire functions (see, e.g., formulas (B.2.3) and (B.2.4)), the function (4.1.2) has order ρ = 1∕α and type σ for any β. Therefore, the two-parametric Mittag-Leffler function (4.1.1) has order ρ = 1∕(Re α) and type 1 for any value of the parameter $$\beta \in \mathbb{C}$$.

## 4.2 Explicit Formulas: Relations to Elementary and Special Functions

Using definition (4.1.1) we obtain a number of formulas relating the two-parametric Mittag-Leffler function E α, β to elementary functions (see, e.g. [HaMaSa11])
$$\displaystyle\begin{array}{rcl} E_{1,1}(z) =\mathrm{ e}^{z},\quad E_{ 1,2}(z) = \frac{\mathrm{e}^{z} - 1} {z},& &{}\end{array}$$
(4.2.1)
$$\displaystyle\begin{array}{rcl} E_{2,1}(z) =\cosh \sqrt{z},\quad E_{2,2}(z) = \frac{\sinh \sqrt{z}} {\sqrt{z}}.& &{}\end{array}$$
(4.2.2)
Some extra formulas, for other special values of parameters, are presented as exercises at the end of the chapter.
Here we also mention two recurrence relations for the function (4.1.1).
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) = \frac{1} {\varGamma (\beta )} + zE_{\alpha,\beta +\alpha }\left (z\right ),& &{}\end{array}$$
(4.2.3)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\beta E_{\alpha,\beta +1}(z) +\alpha z\, \frac{\mathrm{d}} {\mathrm{d}z}E_{\alpha,\beta +1}(z).& &{}\end{array}$$
(4.2.4)

Now we present some other relations of the two-parametric Mittag-Leffler function to certain special functions introduced by different authors.

The hyperbolic functions of order n, denoted by h r (z, n), are defined, e.g., in [Bat-3, 18.2 (2)]. Their series representations relate these functions to the two-parametric Mittag-Leffler function (see [Bat-3, 18.2 (16)]):
$$\displaystyle{ h_{r}(z,n) =\sum \limits _{ k=0}^{\infty } \frac{z^{\mathit{nk}+r-1}} {(\mathit{nk} + r - 1)!} = z^{r-1}E_{ n,r}(z^{n}),\;\;\;r = 1,2,\ldots }$$
(4.2.5)
The trigonometric functions of order n, denoted by k r (z, n), are defined, e.g., in [Bat-3, 18.2 (18)]. With $$\lambda = \mbox{ exp}\left \{ \frac{\pi i} {n}\right \}$$ the functions k r (z, n) and h r (z, n) are related by:
$$\displaystyle{k_{r}(z,n) =\lambda ^{1-r}h_{ r}(\lambda z,n),}$$
from which it follows
$$\displaystyle{ k_{r}(z,n) =\sum \limits _{ j=0}^{\infty }\frac{(-1)^{j}z^{\mathit{nj}+r-1}} {(\mathit{nj} + r - 1)!} = z^{r-1}E_{ n,r}(-z^{n}),\;\;\;r = 1,2,\ldots }$$
(4.2.6)
The relation to the complementary error function is also well-known (see [MatHau08, pp. 80–81], [Dzh66, p. 297]):
$$\displaystyle{ E_{\frac{1} {2},1}(z) =\sum \limits _{ k=0}^{\infty } \frac{z^{k}} {\varGamma \left (\frac{k} {2} + 1\right )} =\mathrm{ e}^{z^{2} }\mathrm{erfc}(-z), }$$
(4.2.7)
where erfc is complementary to the error function erf:
$$\displaystyle{\mathrm{erfc}(z):= \frac{2} {\sqrt{\pi }}\int _{z}^{\infty }\mathrm{e}^{-u^{2} }\mathrm{d}u = 1 -\mathrm{erf}(z),\;z \in \mathbb{C}.}$$
The Miller–Ross function is defined as follows (see [MilRos93]):
$$\displaystyle{ E_{t}(\nu,a) = t^{\nu }\sum \limits _{k=0}^{\infty } \frac{(\mathit{at})^{k}} {\varGamma \left (\nu +k + 1\right )} = t^{\nu }E_{1,\nu +1}(\mathit{at}). }$$
(4.2.8)
The Rabotnov function is represented as follows (see [RaPaZv69]):
$$\displaystyle{ R_{\alpha }(\beta,a) = t^{\alpha }\sum \limits _{k=0}^{\infty } \frac{\beta ^{k}t^{k(\alpha +1)}} {\varGamma \left ((1+\alpha )(k + 1)\right )} = t^{\alpha }E_{\alpha +1,\alpha +1}(\beta t^{\alpha +1}). }$$
(4.2.9)

## 4.3 Differential and Recurrence Relations

The following differentiation formula is an immediate consequence of the definition of the two-parametric Mittag-Leffler function (4.1.1)
$$\displaystyle{ \left ( \frac{\mathrm{d}} {\mathrm{d}z}\right )^{m}[z^{\beta -1}E_{\alpha,\beta }(z^{\alpha })] = z^{\beta -m-1}E_{\alpha,\beta -m}(z^{\alpha })\quad (m \geq 1). }$$
(4.3.1)
We consider now some corollaries of formula (4.3.1). Let $$\alpha = m/n,\ (m,\ n = 1,\ 2,\ \ldots )$$ in (4.3.1). Then
$$\displaystyle\begin{array}{rcl} & \left ( \frac{\mathrm{d}} {\mathrm{d}z}\right )^{m}[z^{\beta -1}E_{ m/n,\beta }(z^{m/n})] & \\ & = z^{\beta -1}E_{m/n,\beta }(z^{m/n}) + z^{\beta -1}\,\sum _{k=1}^{n} \frac{z^{-\frac{m}{n}k}} {\varGamma \left (\beta -\frac{m} {n} k\right )}\quad (m,\ n \geq 1).&{}\end{array}$$
(4.3.2)
Since
$$\displaystyle{ \frac{1} {\varGamma (-s)} = 0\quad (s = 0,\ 1,\ 2,\ldots ),}$$
it follows from (4.3.2) with n = 1 and any $$\beta = 0,\ 1,\ldots,\ m$$ that
$$\displaystyle{ \left ( \frac{\mathrm{d}} {\mathrm{d}z}\right )^{m}[z^{\beta -1}E_{ m,\beta }(z^{m})] = z^{\beta -1}E_{ m,\beta }(z^{m})\quad (m \geq 1). }$$
(4.3.3)
Substituting z nm in place of z in (4.3.2) we get
$$\displaystyle\begin{array}{rcl} & \left (\frac{m} {n} z^{1-\frac{n} {m} } \frac{\mathrm{d}} {\mathrm{d}z}\right )^{m}\left [z^{(\beta -1) \frac{n} {m} }E_{m,\beta }(z)\right ] & \\ & = z^{(\beta -1) \frac{n} {m} }E_{m,\beta }(z) + z^{(\beta -1) \frac{n} {m} }\,\sum _{k=1}^{n} \frac{z^{-k}} {\varGamma \left (\beta -\frac{m} {n} k\right )}\quad (m,\ n = 1,\ 2,\ldots ).&{}\end{array}$$
(4.3.4)
Let m = 1 in this formula. We then obtain the first-order differential equation for the function $$z^{(\beta -1)n}E_{1/n,\beta }(z)$$:
$$\displaystyle\begin{array}{rcl} & \frac{1} {n} \frac{\mathrm{d}} {\mathrm{d}z}\left [z^{(\beta -1)n}E_{ 1/n,\beta }(z)\right ] - z^{n-1}[z^{(\beta -1)n}E_{ 1/n,\beta }(z)]& \\ & = z^{\beta n-1}\sum _{k=1}^{n} \frac{z^{-k}} {\varGamma \left (\beta -\frac{k} {n}\right )}\,,\quad (n = 1,\ 2,\ldots ). &{}\end{array}$$
(4.3.5)
Solving this equation we obtain for any z 0 ≠ 0 ,
$$\displaystyle\begin{array}{rcl} & E_{1/n,\beta }(z) = z^{(1-\beta )n}\,\mathrm{e}^{z^{n} }\left \{z_{0}^{(\beta -1)n}\,\mathrm{e}^{-z_{0}^{n} }\,E_{1/n,\beta }(z_{0})\right.& \\ & \left.+n\int _{z_{0}}^{z}\mathrm{e}^{-\tau ^{n} }\left (\sum _{k=1}^{n} \frac{\tau ^{-k}} {\varGamma \left (\beta -\frac{k} {n}\right )}\tau ^{\beta n-1}\right )\mathrm{d}\tau \right \}\quad (n = 1,\ 2,\ldots ). &{}\end{array}$$
(4.3.6)
Formula (4.3.6) is true with z 0 = 0 if β = 1. In this case we have
$$\displaystyle{ E_{1/n,1}(z) =\mathrm{ e}^{z^{n} }\left \{1 + n\int _{0}^{z}\mathrm{e}^{-\tau ^{n} }\,\left (\sum _{k=1}^{n-1}\frac{\tau ^{k-1}} {\varGamma \left (\frac{k} {n}\right )}\right )\mathrm{d}\tau \right \}\quad (n \geq 2). }$$
(4.3.7)
In particular,
$$\displaystyle{ E_{1/2,1}(z) =\mathrm{ e}^{z^{2} }\,\left \{1 + \frac{2} {\sqrt{\pi }}\int _{0}^{z}\mathrm{e}^{-\tau ^{2} }\mathrm{d}\tau \right \} =\mathrm{ e}^{z^{2} }\,\left \{1 + \mathrm{erf}\,z\right \} =\mathrm{ e}^{z^{2} }\,\mathrm{erfc}\,(-z)\,, }$$
(4.3.8)
and, consequently,
$$\displaystyle{E_{1/2,1}(z) \sim 2\,\mathrm{e}^{z^{2} },\quad \vert \mathrm{arg}z\vert < \frac{\pi } {4},\quad \vert z\vert \rightarrow \infty.}$$

In the following lemma we collect together a number of known recurrence relations for the two-parametric Mittag-Leffler function.

### Lemma 4.1 ([GupDeb07]).

For all α > 0, β > 0 the following relations hold
$$\displaystyle\begin{array}{rcl} z^{2}E_{\alpha,\beta +2\alpha }(z) = E_{\alpha,\beta }(z) - \frac{1} {\varGamma (\beta )} - \frac{z} {\varGamma (\beta +\alpha )},& &{}\end{array}$$
(4.3.9)
$$\displaystyle\begin{array}{rcl} z^{3}E_{\alpha,\beta +3\alpha }(z) = E_{\alpha,\beta }(z) - \frac{1} {\varGamma (\beta )} - \frac{z} {\varGamma (\beta +\alpha )} - \frac{z^{2}} {\varGamma (\beta +2\alpha )},& &{}\end{array}$$
(4.3.10)
$$\displaystyle\begin{array}{rcl} z^{4}E_{\alpha,\beta +3\alpha }(z) = E_{\alpha,\beta }(z) - \frac{1} {\varGamma (\beta )} - \frac{z} {\varGamma (\beta +\alpha )} - \frac{z^{2}} {\varGamma (\beta +2\alpha )} - \frac{z^{3}} {\varGamma (\beta +3\alpha )}.& &{}\end{array}$$
(4.3.11)

## 4.4 Integral Relations and Asymptotics

Using the well-known discrete orthogonality relation
$$\displaystyle{\sum _{h=0}^{m-1}\mathrm{e}^{i2\pi \mathit{hk}/m} = \left \{\begin{array}{@{}l@{\quad }l@{}} m,\quad &\mathrm{if}\;\;\;k \equiv 0\pmod m\,, \\ 0, \quad &\mathrm{if}\;\;\;k\not\equiv 0\pmod m\, \end{array} \right.}$$
and definition (4.1.1) of the function E α, β (z) we have
$$\displaystyle{ \sum _{h=0}^{m-1}E_{\alpha,\beta }(z\,\mathrm{e}^{i2\pi h/m}) = m\,E_{\alpha /m,\beta }(z^{m})\quad (m \geq 1). }$$
(4.4.1)
Substituting here for α and z 1∕m for z we obtain
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {m}\sum _{h=0}^{m-1}E_{ m\alpha,\beta }(z^{1/m}\mathrm{e}^{i2\pi h/m})\quad (m \geq 1). }$$
(4.4.2)
Similarly, the formula
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {2m + 1}\sum _{h=-m}^{m}E_{ (2m+1)\alpha,\beta }(z^{1/(2m+1)}\mathrm{e}^{i2\pi h/(2m+1)})\quad (m \geq 0) }$$
(4.4.3)
can be obtained via the relation
$$\displaystyle{\sum _{h=-m}^{m}e\mathrm{e}^{i2\pi \mathit{hk}/(2m+1)} = \left \{\begin{array}{ll} 2m + 1,&\quad \mathrm{if}\;\;\;k \equiv 0\qquad \pmod 2m + 1\,, \\ 0, &\quad \mathrm{if}\;\;\;k\not\equiv 0\qquad \pmod 2m + 1\,. \end{array} \right.}$$
Using (4.1.1) and term-by-term integration we arrive at
$$\displaystyle{ \int _{0}^{z}E_{\alpha,\beta }(\lambda t^{\alpha })t^{\beta -1}\mathrm{d}t = z^{\beta }E_{\alpha,\beta +1}(\lambda z^{\alpha })\quad (\beta > 0), }$$
(4.4.4)
and furthermore, at the more general relation
$$\displaystyle\begin{array}{rcl} & \frac{1} {\varGamma (\alpha )}\int _{0}^{z}(z - t)^{\mu -1}\,E_{\alpha,\beta }(\lambda t^{\alpha })\,t^{\beta -1}\,\mathrm{d}t & \\ & = z^{\mu +\beta -1}E_{\alpha,\mu +\beta }(\lambda z^{\alpha })\quad (\mu > 0,\ \beta > 0),&{}\end{array}$$
(4.4.5)
where the integration is performed along the straight line connecting the points 0 and z.
It follows from formulas (4.4.5), (4.4.2) and (4.4.3) that
$$\displaystyle\begin{array}{rcl} \frac{1} {\varGamma (\beta )}\int _{0}^{z}(z - t)^{\beta -1}\mathrm{e}^{\lambda t}\mathrm{d}t = z^{\beta }E_{ 1,\beta +1}(\lambda z)\quad (\beta > 0),& &{}\end{array}$$
(4.4.6)
$$\displaystyle\begin{array}{rcl} \frac{1} {\varGamma (\beta )}\int _{0}^{z}(z - t)^{\beta -1}\cosh \sqrt{\lambda }t\,\mathrm{d}t = z^{\beta }E_{ 2,\beta +1}(\lambda z^{2})\quad (\beta > 0),& &{}\end{array}$$
(4.4.7)
$$\displaystyle\begin{array}{rcl} \frac{1} {\varGamma (\beta )}\int _{0}^{z}(z - t)^{\beta -1}\frac{\sinh \sqrt{\lambda }t} {\sqrt{\lambda }}\,\mathrm{d}t = z^{\beta +1}E_{ 2,\beta +2}(\lambda z^{2})\quad (\beta > 0).& &{}\end{array}$$
(4.4.8)
Let us prove the relation
$$\displaystyle\begin{array}{rcl} & z^{\beta -1}E_{\alpha,\beta }(z^{\alpha }) = z^{\beta -1}E_{2\alpha,\beta }(z^{2\alpha }) & \\ & + \frac{1} {\varGamma (\alpha )}\int _{0}^{z}(z - t)^{\alpha -1}E_{ 2\alpha,\beta }(t^{2\alpha })t^{\beta -1}\,\mathrm{d}t\quad (\beta > 0).&{}\end{array}$$
(4.4.9)
First of all, we have by direct evaluations
$$\displaystyle\begin{array}{rcl} & \int _{0}^{z}E_{2\alpha,\beta }(t^{2\alpha })t^{\beta -1}\left \{1 + \frac{(z-t)^{\alpha }} {\varGamma (\alpha +1)} \right \}\,\mathrm{d}t & {}\\ & =\sum _{ k=0}^{\infty } \frac{1} {\varGamma (2k\alpha +\beta )}\int _{0}^{z}t^{2k\alpha +\beta -1}\left \{1 + \frac{(z-t)^{\alpha }} {\varGamma (\alpha +1)} \right \}\,\mathrm{d}t & {}\\ & = z^{\beta }\sum _{k=0}^{\infty } \frac{z^{2k\alpha }} {\varGamma (2k\alpha +\beta +1)} + z^{\beta }\sum _{ k=0}^{\infty } \frac{z^{(2k+1)\alpha }} {\varGamma ((2k+1)\alpha +\beta +1)}& {}\\ & = z^{\beta }\sum _{k=0}^{\infty } \frac{z^{k\alpha }} {\varGamma (k\alpha +\beta +1)} = z^{\beta }E_{\alpha,\beta +1}(z^{\alpha }). & {}\\ \end{array}$$
This relation and formula (4.4.4) imply
$$\displaystyle\begin{array}{rcl} & \int _{0}^{z}E_{2\alpha,\beta }(t^{2\alpha })t^{\beta -1}\left \{1 + \frac{(z-t)^{\alpha }} {\varGamma (\alpha +1)} \right \}\,\mathrm{d}t& {}\\ & =\int _{ 0}^{z}E_{\alpha,\beta }(t^{\alpha })t^{\beta -1}\,\mathrm{d}t\quad (\beta > 0). & {}\\ \end{array}$$
Differentiation of this formula with respect to z gives us formula (4.4.9).
Let us prove the formula
$$\displaystyle\begin{array}{rcl} & \int _{0}^{l}x^{\beta -1}E_{\alpha,\beta }(\lambda x^{\alpha })\,(l - x)^{\nu -1}E_{\alpha,\nu }(\lambda ^{{\ast}}(l - x)^{\alpha })\,\mathrm{d}x& \\ & = \frac{\lambda \,E_{\alpha,\beta +\nu }(l^{\alpha }\lambda )-\lambda ^{{\ast}}\,E_{\alpha,\beta +\nu }(l^{\alpha }\lambda ^{{\ast}})} {\lambda -\lambda ^{{\ast}}} \,l^{\beta +\nu -1}\quad (\beta > 0\,,\;\nu > 0)\,, &{}\end{array}$$
(4.4.10)
where λ and $$\lambda ^{{\ast}}\ (\lambda \not =\lambda ^{{\ast}})$$ are any complex parameters.
Indeed, using (4.1.1) for any λ and λ (λ ≠ λ ) and β > 0 ,  ν > 0 we find
$$\displaystyle\begin{array}{rcl} & \int _{0}^{l}x^{\beta -1}E_{\alpha,\beta }(\lambda x^{\alpha })(l - x)^{\nu -1}E_{\alpha,\nu }(\lambda ^{{\ast}}(l - x)^{\alpha })\,\mathrm{d}x & {}\\ & =\sum _{ n=0}^{\infty }\sum _{m=0}^{\infty } \frac{\lambda ^{n}(\lambda ^{{\ast}})^{m}} {\varGamma (n\alpha +\beta )\,\varGamma (m\alpha +\nu )}\int _{0}^{l}x^{n\alpha +\beta -1}(l - x)^{m\alpha +\nu -1}\,\mathrm{d}x & {}\\ & =\sum _{ n=0}^{\infty }\sum _{m=0}^{\infty }\frac{\lambda ^{n}(\lambda ^{{\ast}})^{m}l^{(n+m)\alpha +\beta +\nu -1}} {\varGamma ((m+n)\alpha )+\beta +\nu )} = l^{\beta +\nu -1}\sum _{ n=0}^{\infty }\sum _{ k=n}^{\infty }\frac{\lambda ^{n}(\lambda ^{{\ast}})^{k-n}\,l^{k\alpha }} {\varGamma (k\alpha +\beta +\nu )} & {}\\ & = l^{\beta +\nu -1}\sum _{k=0}^{\infty }\frac{(\lambda ^{{\ast}})^{k}\,l^{k\alpha }} {\varGamma (k\alpha +\beta +\nu )}\,\sum _{n=0}^{k}\left ( \frac{\lambda }{\lambda ^{ {\ast}}}\right )^{n} = \frac{l^{\beta +\nu -1}} {\lambda -\lambda ^{{\ast}}} \sum _{k=0}^{\infty }\frac{l^{k\alpha }(\lambda ^{k+1}-(\lambda ^{{\ast}})^{k+1})} {\varGamma (k\alpha +\beta +\nu )} \,. & {}\\ \end{array}$$
Using formula (4.1.1) once more, we arrive at (4.4.10).
Finally, we obtain two integral relations:
$$\displaystyle\begin{array}{rcl} \int _{0}^{+\infty }\mathrm{e}^{-t}E_{\alpha,\beta }(\mathit{zt}^{\alpha })t^{\beta -1}\mathrm{d}t = \frac{1} {1 - z}\quad (\beta > 0,\ \vert z\vert < 1)\,,& &{}\end{array}$$
(4.4.11)
$$\displaystyle\begin{array}{rcl} \int _{0}^{+\infty }\mathrm{e}^{-t^{2}/(4x) }\,E_{\alpha,\beta }(t^{\alpha })\,t^{\beta -1}\,\mathrm{d}t = \sqrt{\pi }x^{\beta /2}\,E_{ 2\alpha,\frac{1+\beta } {2} }\left (x^{2\alpha }\right )\;(\beta > 0,\ x > 0).& &{}\end{array}$$
(4.4.12)
First of all, since the Mittag-Leffler type function (4.1.1) is an entire function of order ρ = 1∕(Re α) and type 1 (see Sect. 4.1), we have for any σ > 1 the estimate:
$$\displaystyle{\vert E_{\alpha,\beta }(z)\vert \leq C\mbox{ exp}\{\sigma \vert z\vert ^{\rho }\}.}$$
Consequently, the integrals in the formulae (4.4.11) and (4.4.12) are convergent.
It is easy to check that term-by-term integration of the expansion
$$\displaystyle{\mathrm{e}^{-t}\,E_{\alpha,\beta )}(\mathit{zt}^{\alpha })t^{\beta -1} =\sum _{ k=0}^{\infty }\frac{\mathrm{e}^{-t}\,t^{k\alpha +\beta -1}} {\varGamma (k\alpha +\beta )} \,z^{k}}$$
can be performed with respect to t along the interval (0,  + ) if | z |  < 1. As a result, we arrive at formula (4.4.11).
Similarly, we have using term-by-term integration of the following expansion with respect to t:
$$\displaystyle{\mathrm{e}^{-t^{2}/(4x) }\,E_{\alpha,\beta }(t^{\alpha })\,t^{\beta -1} =\sum _{ k=0}^{\infty }\frac{t^{k\alpha +\beta -1}} {\varGamma (k\alpha +\beta )} \,\mathrm{e}^{-t^{2}/(4x) }\quad (\beta > 0)}$$
along the same interval (0,  + ) (integration is performable with any fixed x > 0!),
$$\displaystyle{\int _{0}^{+\infty }\,\mathrm{e}^{-t^{2}/(4x) }\,E_{\alpha,\beta }(t^{\alpha })\,t^{\beta -1}\,\mathrm{d}t =\sum _{ k=0}^{\infty } \frac{\varGamma \left (\frac{k\alpha +\beta } {2} \right )} {2\,\varGamma (k\alpha +\beta )}\,(2\sqrt{x})^{k\alpha +\beta }\,.}$$
Rewriting the right-hand side of the last relation by using the Lagrange formula
$$\displaystyle{\varGamma (s)\varGamma (s + 1/2) = \sqrt{\pi }\,2^{1-2s}\,\varGamma (2s)}$$
we obtain formula (4.4.12).

The Mittag-Leffler type function $$E_{\alpha,\alpha }\left (z\right )$$ plays an essential role in the linear Abel integral equation of the second kind (see, e.g., [GorVes91, GorMai97]).

### Theorem 4.2.

Let a function f(t) be in the function space L 1 (0, l). Let α > 0 and λ be an arbitrary complex parameter. Then the integral equation
$$\displaystyle{ u(t) = f(t) + \frac{\lambda } {\varGamma (\alpha )}\int _{0}^{t}(t-\tau )^{\alpha -1}\,u(\tau )\,\mathrm{d}\tau,\quad t \in (0,\ l), }$$
(4.4.13)
has a unique solution
$$\displaystyle{ u(t) = f(t) +\lambda \int _{ 0}^{t}(t-\tau )^{\alpha -1}\,E_{\alpha,\alpha }\left [\lambda \,(t-\tau )^{\alpha }\right )\,f(\tau )\,\mathrm{d}\tau,\quad t \in (0,\ l), }$$
(4.4.14)
in the space L 1 (0, l) .

This result was discovered in the pioneering work of Hille and Tamarkin [HilTam30]. We give the proof of this theorem in Chap. .

We consider now a simple application of Theorem 4.2.

Let z = t > 0 and t = τ be the integration variable in (4.4.9). Then this representation can be considered as an integral equation of type (4.4.13) with
$$\displaystyle{f(t) = t^{\beta -1}\,E_{\alpha,\beta }(t^{\alpha })\,,\quad \lambda = 1\,;}$$
and solution
$$\displaystyle{u(t) = t^{\beta -1}E_{ 2\alpha,\beta }(x^{2\alpha })\,.}$$
Using formula (4.4.14) we obtain for the solution u(t) the representation
$$\displaystyle\begin{array}{rcl} & u(t) = t^{\beta -1}\,E_{\alpha,\beta }(t^{\alpha }) & \\ & -\int _{0}^{t}(t-\tau )^{\alpha -1}\,E_{\alpha,\beta }(\tau ^{\alpha })\,\tau ^{\beta -1}\,E_{\alpha,\alpha }\left [-(t-\tau )^{\alpha }\right ]\mathrm{d}\tau.&{}\end{array}$$
(4.4.15)

We also mention asymptotic results for the Mittag-Leffler function E α, β (z) which are essentially a refinement of results of Dzhrbashyan (see [Dzh66]).

### Theorem 4.3.

For all 0 < α < 2, $$\beta \in \mathbb{C}$$ , $$m \in \mathbb{N}$$ , the following asymptotic formulas hold:

If |arg  z| < min {π,πα}, then
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } } -\sum \limits _{k=1}^{m} \frac{z^{-k}} {\varGamma (\beta -k\alpha )} + O\left (\vert z\vert ^{-m-1}\right ),\,\vert z\vert \rightarrow \infty. }$$
(4.4.16)
If 0 < α < 1, πα < |arg  z| < π, then
$$\displaystyle{ E_{\alpha,\beta }(z) = -\sum \limits _{k=1}^{m} \frac{z^{-k}} {\varGamma (\beta -k\alpha )} + O\left (\vert z\vert ^{-m-1}\right ),\,\vert z\vert \rightarrow \infty. }$$
(4.4.17)

### Theorem 4.4.

For all α ≥ 2, $$\beta \in \mathbb{C}$$ , $$m \in \mathbb{N}$$ , the following asymptotic formula holds:
$$\displaystyle\begin{array}{rcl} & E_{\alpha,\beta }(z) = \frac{1} {\alpha } \sum \limits _{\vert \mathrm{arg}\,z+2\pi n\vert <\frac{3\pi \alpha } {4} }\left (z^{1/\alpha }\mathrm{e}^{2\pi \mathit{in}/\alpha }\right )^{1-\beta }\mathrm{e}^{z^{1/\alpha }\mathrm{e}^{2\pi \mathit{in}/\alpha } }& \\ & -\sum \limits _{k=1}^{m} \frac{z^{-k}} {\varGamma (\beta -k\alpha )} + O\left (\vert z\vert ^{-m-1}\right ),\,\vert z\vert \rightarrow \infty. &{}\end{array}$$
(4.4.18)

A more exact description of the remainders in formulas (4.4.16)–(4.4.18) is presented, e.g., in [PopSed11].

## 4.5 The Two-Parametric Mittag-Leffler Function as an Entire Function

One more immediate consequence of the results in [Sed94, Sed00, Sed04, Sed07] (see also [Pop02, Pop06, PopSed03]) is the fact that E α, β with $$\alpha > 0,\beta \in \mathbb{R}$$, is a function of completely regular growth in the sense of Levin–Pfluger.

For an entire function F(z) of finite order ρ this means that the following limit exists
$$\displaystyle{ h_{F}(\theta ) =\lim _{r\rightarrow \infty }\frac{\log \,\left \vert F(r\mathrm{e}^{i\theta })\right \vert } {r^{\rho }}, }$$
(4.5.1)
when r →  takes all positive values avoiding an exceptional set C 0 of relatively small measure common for all rays arg z = θ (see the formal definition in Sect. B.4). Sometimes the limit in (4.5.1) is called the weak limit and is denoted by
$$\displaystyle{\lim _{r\rightarrow \infty }^{\!\!\!{\ast}}\,.}$$
The above property is known to be equivalent to the regularity of the distribution of zeros of an entire function (see [Lev56, Ron92]). The corresponding result is presented in Sect. B.4.
To prove that E α, β possesses this property let us consider the Weierstrass product representation (see Theorem B.3.1). For the two-parametric Mittag-Leffler function this representation has the form
$$\displaystyle\begin{array}{rcl} & E_{\alpha,\beta } =\prod \limits _{ n=1}^{\infty }\left (1 - \frac{z} {z_{n}}\right )\mathrm{e}^{ \frac{z} {z_{n}} + \frac{z^{2}} {2z_{n}^{2}} +\ldots + \frac{z^{[1/\alpha ]}} {[1/\alpha ]z_{n}^{[1/\alpha ]}} } & \\ & \times \prod \limits _{n=1}^{\infty }\left (1 - \frac{z} {z_{-n}}\right )\mathrm{e}^{ \frac{z} {z_{-n}} + \frac{z^{2}} {2z_{-n}^{2}} +\ldots + \frac{z^{[1/\alpha ]}} {[1/\alpha ]z_{-n}^{[1/\alpha ]}} } \times \mathrm{ e}^{q_{0}+q_{1}z+\ldots +q_{[1/\alpha ]}z^{[1/\alpha ]} },&{}\end{array}$$
(4.5.2)
where z n , z n are the zeros of E α, β in the neighbourhoods of the rays $$\mathrm{arg}\,z = \frac{\pi \alpha } {2},\;\mathrm{arg}\,z = -\frac{\pi \alpha }{2}$$, respectively.
This formula can be written in terms of simple Weierstrass factors:
$$\displaystyle{ G(\zeta,p) = (1-\zeta )\mathrm{e}^{\zeta +\frac{\zeta ^{2}} {2} +\ldots +\frac{\zeta ^{p}} {p} },\;\;\;p \in \mathbb{N}. }$$
(4.5.3)
Then (4.5.2) becomes
$$\displaystyle{ E_{\alpha,\beta }(z) =\prod \limits _{ n=1}^{\infty }G\left ( \frac{z} {z_{n}},[1/\alpha ]\right ) \times \prod \limits _{n=1}^{\infty }G\left ( \frac{z} {z_{-n}},[1/\alpha ]\right ) \times \mathrm{ e}^{q_{0}+q_{1}z+\ldots +q_{[1/\alpha ]}z^{[1/\alpha ]} }. }$$
(4.5.4)
Formula (4.5.4) (or (4.5.2)) is not too useful for obtaining asymptotic results. By using the technique developed for the entire functions of completely regular growth (see, e.g., [GoLeOs91, Lev56, Ron92]), we can compare the asymptotic behaviour of E α, β with that of more simple functions. In order to formulate it in a more rigorous form let us introduce two pairs of sequences:
$$\displaystyle\begin{array}{rcl} w_{n} = \vert z_{n}\vert \mathrm{e}^{i \frac{\pi \alpha }{2} },\;n = 1,2,,\ldots,\;w_{-n} = \vert z_{-n}\vert \mathrm{e}^{-i \frac{\pi \alpha }{2} },\;n = 1,2,,\ldots;& &{}\end{array}$$
(4.5.5)
$$\displaystyle\begin{array}{rcl} \omega _{n} = (2\pi n)^{\alpha }\mathrm{e}^{i \frac{\pi \alpha }{2} },\;n = 1,2,,\ldots,\;\omega _{-n} = (2\pi n)^{\alpha }\mathrm{e}^{-i \frac{\pi \alpha }{2} },\;n = 1,2,,\ldots;& &{}\end{array}$$
(4.5.6)
and construct the corresponding Weierstrass products for these sequences
$$\displaystyle\begin{array}{rcl} W(z) =\prod \limits _{ n=1}^{\infty }G\left ( \frac{z} {w_{n}},[1/\alpha ]\right ) \times \prod \limits _{n=1}^{\infty }G\left ( \frac{z} {w_{-n}},[1/\alpha ]\right ) \times \mathrm{ e}^{q_{0}+q_{1}z+\ldots +q_{[1/\alpha ]}z^{[1/\alpha ]} },& &{}\end{array}$$
(4.5.7)
$$\displaystyle\begin{array}{rcl} \varOmega (z) =\prod \limits _{ n=1}^{\infty }G\left (\frac{z} {\omega _{n}},[1/\alpha ]\right ) \times \prod \limits _{n=1}^{\infty }G\left ( \frac{z} {\omega _{-n}},[1/\alpha ]\right ) \times \mathrm{ e}^{q_{0}+q_{1}z+\ldots +q_{[1/\alpha ]}z^{[1/\alpha ]} }.& &{}\end{array}$$
(4.5.8)

### Lemma 4.5.

The functions E α,β (z), W(z), Ω(z) are functions of completely regular growth with the same characteristics, i.e. with the same angular density (see formula (B.4.1a) ) and in the case of integer ρ = [1∕α] also with the same coefficients of angular symmetry (see formula (B.4.1b)) .

To prove this result it suffices to examine the corresponding properties of the sequences $$(z_{\pm n}),(w_{\pm n}),(\omega _{\pm n})$$.

### Lemma 4.6.

The functions E α,β (z), W(z), Ω(z) have the same asymptotic behaviour, i.e. the following weak limits exist 1:
$$\displaystyle{ \lim _{r\rightarrow \infty }^{\!\!\!{\ast}}\frac{\left \vert E_{\alpha,\beta }(r\mathrm{e}^{i\theta })\right \vert } {\left \vert W(r\mathrm{e}^{i\theta })\right \vert } = \lim _{r\rightarrow \infty }^{\!\!\!{\ast}}\frac{\left \vert W(r\mathrm{e}^{i\theta })\right \vert } {\left \vert \varOmega (r\mathrm{e}^{i\theta })\right \vert } = 1. }$$
(4.5.9)

$$\vartriangleleft$$ Comparing representations (4.5.4) and (4.5.7) we arrive at the conclusion that the quotient under this limit is in fact a Blaschke type product for two rays. Such products were studied in [Gov94]. Repeating calculations of [Gov94] we get the existence of the first limit (4.5.9).

The second result of the lemma also follows from quite general considerations. Comparing sequences (w ±n ) and (ω ±n ) we can see that there exists a proximate order (cf. [Lev56, GoLeOs91]) (i.e. a non-negative, non-decreasing function such that $$\lim _{r\rightarrow \infty }\rho (r) =\rho$$, $$\lim _{r\rightarrow \infty }\rho ^{{\prime}}(r)r\log \,r = 0$$) for which
$$\displaystyle{ \left \vert w_{\pm n}\right \vert ^{\rho (r)} = \left \vert \omega _{ \pm n}\right \vert ^{\rho }. }$$
(4.5.10)
A possible way to see this is to use an interpolating $$\mathcal{C}^{1}$$-function ρ(r) obeying the interpolation conditions
$$\displaystyle{ \rho (n) =\rho \frac{\log \,\vert \omega _{\pm n}\vert } {\log \,\vert w_{\pm n}\vert },\;\;\;n = 1,2,\ldots }$$
(4.5.11)
Since we need to obtain only an asymptotic result, the interpolation problem can be simplified and even solved in closed form. After constructing the proximate order it remains to apply the Valiron–Levin theory of entire functions of a proximate order (see, e.g., [Lev56]). This completes the proof.$$\vartriangleright$$
We are now in a position to discuss the global behaviour of the Mittag-Leffler type function E α, β (z). This behaviour is described in terms of the indicator function for E α, β (z) in the case 0 < α < 2 (we assume additionally that β ≠ 1, 0, −1, , when α = 1, see (B.2.5)):
$$\displaystyle{ h_{E_{\alpha,\beta }}(\theta ) = \left \{\begin{array}{ll} \cos \,\frac{\theta }{\alpha }, &0 \leq \vert \theta \vert < \frac{\pi \alpha } {2}, \\ 0,& \frac{\pi \alpha } {2} \leq \vert \theta \vert \leq \pi. \end{array} \right.}$$
(4.5.12)

## 4.6 Distribution of Zeros

First of all we recall some relations of the Mittag-Leffler function to elementary functions for special values of the parameters α, β. In these cases the zeros of the Mittag-Leffler function can be found explicitly.
$$\displaystyle\begin{array}{rcl} E_{1,1}(z) = \mbox{ exp}\{z\},\;E_{1,-m}(z) = z^{m+1}\mbox{ exp}\{z\},\;m \in \mathbb{Z}_{ +};& &{}\end{array}$$
(4.6.1)
$$\displaystyle\begin{array}{rcl} E_{2,1}(z) =\cosh \sqrt{z},\;E_{2,2}(z) = \frac{\sinh \sqrt{z}} {\sqrt{z}},\;E_{2,3}(z) = \frac{\cosh \sqrt{z} - 1} {\sqrt{z}},& &{}\end{array}$$
(4.6.2)
$$\displaystyle\begin{array}{rcl} E_{2,-2m}(z) = z^{m+1/2}\sinh \sqrt{z},\;m \in \mathbb{Z}_{ +},\;E_{2,-(2m-1)}(z) = z^{m}\cosh \sqrt{z},\;m \in \mathbb{N}.& &{}\end{array}$$
(4.6.3)
Thus the function E 1, 1(z) has no zero, while the function E 1, −m (z) has its only zero at z = 0 of order m + 1. Below we can see that for all other values of parameters α, β (including those described in (4.6.2) and (4.6.3)) the Mittag-Leffler function E α, β (z) has an infinite number of zeros. We should also mention that the function E 2, 3(z) has double zeros at the points $$z_{n} = -(2\pi n)^{2},\,n \in \mathbb{N}$$. This is the only case when the Mittag-Leffler function E α, β (z) has an infinite number of multiple zeros.
In order to describe the distribution of zeros of the Mittag-Leffler function E α, β (z) we introduce the following constants:
$$\displaystyle{ c_{\beta } = \frac{\alpha } {\varGamma (\beta -\alpha )},\;d_{\beta } = \frac{\alpha } {\varGamma (\beta -2\alpha )},\;\tau _{\beta } = 1 + \frac{1-\beta } {\alpha },\;\beta \not =\alpha - l,\,l \in \mathbb{Z}_{+}, }$$
(4.6.4)
$$\displaystyle{ c_{\beta } = \frac{\alpha } {\varGamma (\beta -2\alpha )},\;d_{\beta } = \frac{\alpha } {\varGamma (\beta -3\alpha )},\;\tau _{\beta } = 2 + \frac{1-\beta } {\alpha },\;\beta =\alpha -l,\,l \in \mathbb{Z}_{+},\alpha \not\in \mathbb{N}. }$$
(4.6.5)
By construction c β  ≠ 0 for all considered α and β. The values of parameters α and β, which are not mentioned in (4.6.4) and (4.6.5), are called exceptional values.

### Theorem 4.7.

Let the values of parameters α,β satisfy one of the following relations:
1. (1)

$$0 <\alpha < 2,\beta \in \mathbb{C}$$ ,  and β≠0,−1,−2,… when α = 1;

2. (2)

α = 2, Re  β > 3.

Then all zeros z n of the Mittag-Leffler function E α,β (z) with sufficiently large modulus are simple and the asymptotic relation holds for n →±∞
$$\displaystyle{ \left (z_{n}\right )^{1/\alpha } = 2\pi \mathit{in} -\tau _{\beta }\alpha \log \,2\pi \mathit{in} + \frac{d_{\beta }/c_{\beta }} {(2\pi \mathit{in})^{\alpha }} + (\tau _{\beta }\alpha )^{2}\frac{\log \,2\pi \mathit{in}} {2\pi \mathit{in}} - (\tau _{\beta }\alpha )^{2} \frac{\log \,c_{\beta }} {2\pi \mathit{in}} +\alpha _{n}, }$$
(4.6.6)
where for α < 2
$$\displaystyle{ \alpha _{n} = O\left ( \frac{\log \vert n\vert } {\vert n\vert ^{1+\alpha }}\right ) + O\left ( \frac{1} {\vert n\vert ^{2\alpha }}\right ) + O\left (\frac{\log ^{2}\vert n\vert } {\vert n\vert ^{2}}\right ), }$$
(4.6.7)
but for α = 2
$$\displaystyle{ \alpha _{n} = \frac{\mathrm{e}^{\pm i\pi \beta }} {c_{\beta }^{2}(2\pi n)^{-4\tau _{\beta }}} + O\left ( \frac{1} {\vert n\vert ^{-8\tau _{\beta }}}\right ) + O\left ( \frac{\log \vert n\vert } {\vert n\vert ^{1-4\tau _{\beta }}}\right ) + O\left (\frac{\log ^{2}\vert n\vert } {\vert n\vert ^{2}}\right ). }$$
(4.6.8)

The proof of the theorem is based on the integral representation of the Mittag-Leffler function E α, β (z) and on the following lemma.

### Lemma 4.8.

Let $$A \in \mathbb{C}$$ and δ ∈ (0,π∕2) be fixed numbers and let the sets Z, W be defined for all R > 0 by the relations
$$\displaystyle\begin{array}{rcl} & Z = Z_{\delta,R} = \left \{z: \vert \mathrm{arg}\,z\vert <\pi -\delta,\,\vert z\vert > R\right \}, & {}\\ & W = W_{\delta,R} = \left \{z: \vert \mathrm{arg}\,z\vert <\pi -2\delta,\,\vert z\vert > 2R\right \}.& {}\\ \end{array}$$
Then for sufficiently large R > 0 the equation
$$\displaystyle{z - A\log \,z = w,\;w \in W,}$$
has a unique zero z ∈ Z. This zero is simple and we have the asymptotics
$$\displaystyle{ z = w + A\log \,w + A^{2}\frac{\log \,w} {w} + O\left (\frac{\log ^{2}\,w} {w^{2}}\right ),\;w \rightarrow \infty. }$$
(4.6.9)
$$\vartriangleleft$$ Proof of Theorem 4.7 ([PopSed11, pp. 35–37]). Let us put in the formulas (4.4.16) and (4.4.17) m = 1 if β is defined as in (4.6.4), and m = 2 if β is defined as in (4.6.5). Then c β  ≠ 0. Hence one can conclude from (4.4.16) and (4.4.17) that for any $$\varepsilon > 0$$ all zeros z n of the Mittag-Leffler function E α, β (z) with sufficiently large modulus are situated in the angle $$\vert \mathrm{arg}\,z\vert < \frac{\pi \alpha } {2}+\varepsilon$$. In this angle E α, β (z) satisfies the asymptotic relation
$$\displaystyle{ \alpha z^{m}E_{\alpha,\beta }(z) = z^{\tau _{\beta }}\mbox{ exp}\{z^{1/\alpha }\} - c_{\beta } -\frac{d_{\beta }} {z} + O\left ( \frac{1} {z^{2}}\right ),\;\vert \mathrm{arg}\,z\vert < \frac{\pi \alpha } {2} +\varepsilon. }$$
(4.6.10)
Therefore, there exists a sufficiently large r 0 such that all zeros $$z_{n},\vert z_{n}\vert > r_{0}$$, can be found from the equation
$$\displaystyle{ \mbox{ exp}\{z^{1/\alpha } +\tau _{\beta }\log \,z\} = c_{\beta } + \frac{d_{\beta }} {z} + O\left ( \frac{1} {z^{2}}\right ). }$$
(4.6.11)
Let us put
$$\displaystyle{ w = z^{1/\alpha } +\alpha \tau _{\beta }\log \,z^{1/\alpha }. }$$
(4.6.12)
Then, by Lemma 4.8 we obtain the solution to (4.6.12) with respect to z 1∕α in the form
$$\displaystyle{z^{1/\alpha } = w + O\left (\log \,w\right ).}$$
Hence
$$\displaystyle{\frac{1} {z} = \frac{1} {w^{\alpha }}\left (1 + O\left (\frac{\log \,w} {w}\right )\right ) = \frac{1} {w^{\alpha }} + O\left ( \frac{\log \,w} {w^{1+\alpha }}\right ).}$$
Substituting this relation into (4.6.11) we obtain the equation
$$\displaystyle{ \mbox{ exp}\{w\} = c_{\beta } + \frac{d_{\beta }} {w^{\alpha }} + O\left ( \frac{\log \,w} {w^{1+\alpha }}\right ) + O\left ( \frac{1} {w^{2\alpha }}\right ). }$$
(4.6.13)
In particular,
$$\displaystyle{ \mbox{ exp}\{w\} = c_{\beta } + o\left (1\right ),\;w \rightarrow \infty. }$$
(4.6.14)
Since all zeros of the function exp{w} − c β are simple and are given by the formula $$2\pi \mathit{in} +\log \, c_{\beta },\,n \in \mathbb{Z}$$, by Rouché’s theorem all zeros w n of Eq. (4.6.14) with sufficiently large modulus are simple too and can be described by the formula
$$\displaystyle{ w_{n} = 2\pi \mathit{in} +\log \, c_{\beta } +\epsilon _{n},\;\epsilon _{n} \rightarrow 0,\;n \rightarrow \pm \infty. }$$
(4.6.15)
Thus
$$\displaystyle{ \frac{1} {w_{n}} = \frac{1} {2\pi \mathit{in}} + \left (1 + O\left ( \frac{1} {n}\right )\right ),\;\log \,w_{n} =\log \, \vert n\vert + O\left (1\right ),\;n \rightarrow \pm \infty. }$$
(4.6.16)
Therefore, if w = w n in (4.6.14), then
$$\displaystyle{c_{\beta }\mbox{ exp}\{\epsilon _{n}\} = c_{\beta } + \frac{d_{\beta }} {(2\pi \mathit{in})^{\alpha }} + O\left ( \frac{\log \,\vert n\vert } {\vert n\vert ^{1+\alpha }}\right ) + O\left ( \frac{1} {\vert n\vert ^{2\alpha }}\right ).}$$
Since the left-hand side of this relation is equal to $$c_{\beta } + c_{\beta }\epsilon _{n} + O\left (\epsilon _{n}^{2}\right )$$, we have $$\epsilon _{n} = O\left ( \frac{1} {\vert n\vert ^{\alpha }}\right )$$ and hence
$$\displaystyle{ \epsilon _{n} = \frac{d_{\beta }/c_{\beta }} {(2\pi \mathit{in})^{\alpha }} + O\left ( \frac{\log \,\vert n\vert } {\vert n\vert ^{1+\alpha }}\right ) + O\left ( \frac{1} {\vert n\vert ^{2\alpha }}\right ). }$$
(4.6.17)
Substituting this relation into (4.6.15) we get
$$\displaystyle\begin{array}{rcl} w_{n} = 2\pi \mathit{in} +\log \, c_{\beta } + \frac{d_{\beta }/c_{\beta }} {(2\pi \mathit{in})^{\alpha }} + O\left ( \frac{\log \,\vert n\vert } {\vert n\vert ^{1+\alpha }}\right ) + O\left ( \frac{1} {\vert n\vert ^{2\alpha }}\right ),\;n \rightarrow \pm \infty,& &{}\end{array}$$
(4.6.18)
$$\displaystyle\begin{array}{rcl} \log \,w_{n} =\log \, 2\pi \mathit{in} + \frac{\log \,c_{\beta }} {2\pi \mathit{in}} + O\left ( \frac{1} {\vert n\vert ^{1+\alpha }}\right ),\;n \rightarrow \pm \infty.& &{}\end{array}$$
(4.6.19)
Now we note that the pre-images z n of w n satisfy $$\vert \mathrm{arg}\,z_{n}\vert < \frac{\pi \alpha } {2}+\varepsilon$$ and $$\frac{1} {\alpha } \left ( \frac{\pi \alpha } {2}+\varepsilon \right ) <\pi$$. Thus the conditions of Lemma 4.8 are satisfied and we obtain from this lemma and from (4.6.12) and (4.6.18)
$$\displaystyle{ z_{n}^{1/\alpha } = w_{ n} -\alpha \tau _{\beta }\log \,w_{n} + \left (\alpha \tau _{\beta }\right )^{2}\frac{\log \,w_{n}} {w_{n}} + O\left (\frac{\log ^{2}\,w_{n}} {w_{n}^{2}}\right ). }$$
(4.6.20)
Then the proof of the theorem in case (1) follows from (4.6.18) and (4.6.19).
In case (2) one can use a similar argument (see [PopSed11, pp. 36–37]) based on the following asymptotic formula
$$\displaystyle{ E_{2,\beta }(z) = \frac{1} {2}z^{(1-\beta )/2}\left (\mathrm{e}^{\sqrt{z}} +\mathrm{ e}^{\mp i\pi (1-\beta )}\mathrm{e}^{-\sqrt{z}}\right ) -\sum \limits _{ k=1}^{m} \frac{1} {z^{k}\varGamma (\beta -2k)} + O\left ( \frac{1} {z^{m+1}}\right ), }$$
(4.6.21)
which is valid for | z | →  in the angles 0 ≤ arg z ≤ π and −π ≤ arg z ≤ 0, respectively. $$\vartriangleright$$

The most attractive result (see, e.g., [PopSed11, p. 37]) concerning the distribution of zeros of the Mittag-Leffler function is the following:

### Theorem 4.9.

Let $$\mathrm{Re}\,\beta < 3,\beta \not =2 - l,l \in \mathbb{Z}_{+}$$ . Then all zeros z n of the Mittag-Leffler function E 2,β with sufficiently large modulus are simple and the following asymptotic formula is valid (n →±∞)
$$\displaystyle{ \sqrt{z_{n}} =\pi i\left (n - 1 +\beta /2\right ) + (-1)^{n}\frac{c_{\beta }\mathrm{e}^{-i\pi \beta /2}} {2(i\pi n)^{2\tau _{\beta }}} + O\left ( \frac{1} {n^{6\mathrm{Re}\,\tau _{\beta }}}\right ) + O\left ( \frac{1} {n^{1+2\mathrm{Re}\,\tau _{\beta }}}\right ), }$$
(4.6.22)
where the single-valued branch of the function $$\sqrt{z}$$ is chosen by the relation 0 ≤arg  z < 2π.

If β is real then all zeros z n of E 2,β with sufficiently large modulus are real.

Now we present a result on the distribution of zeros of the function E 2, 3+ (z), γ ≠ 0, $$\gamma \in \mathbb{R}$$. For the proof of the following theorem we refer to [PopSed11, pp. 39–44].

### Theorem 4.10.

1. (1)

The set of multiple zeros of the function $$E_{2,3+i\gamma }(z)$$ is at most finite.

2. (2)
The sequence of all zeros z n consists of two subsequences $$z_{n}^{+},n > n^{+}$$ , and $$z_{n}^{-},n < -n^{-}$$ , for which the following asymptotic relation is valid
$$\displaystyle{ \sqrt{z_{n }^{\pm }} = 2\pi \mathit{in} - \frac{\pi \gamma } {2} +\delta _{n} + O\left ( \frac{1} {n}\right ),\;n \rightarrow \pm \infty, }$$
(4.6.23)
where the sequence δ n is defined by
$$\displaystyle{ \delta _{n} =\delta _{n}(\gamma ) =\log \, \left (\eta \mathrm{e}^{i\gamma \log \,2\pi n} + \sqrt{\left (\eta \mathrm{e}^{i\gamma \log \,2\pi n } \right ) ^{2 } - 1}\right ),\;\eta = \frac{1} {\varGamma (1 + i\gamma )}, }$$
(4.6.24)
where the principal branch is used for the values of the logarithmic function.

3. (3)
The sequence $$\zeta _{n} = \sqrt{z_{n}}$$ asymptotically belongs to the semi-strips
$$\displaystyle{ \log \,\rho _{1} < \left \vert \mathrm{Re}\,\zeta + \frac{\pi \gamma } {2}\right \vert <\log \,\rho _{2},\;\mathrm{Im}\,\zeta > 0, }$$
(4.6.25)
where
$$\displaystyle{\rho _{1} = \vert \eta \vert + \sqrt{\vert \eta \vert ^{2 } - 1},\;\rho _{2} = \vert \eta \vert + \sqrt{\vert \eta \vert ^{2 } + 1}.}$$

4. (4)

Every point of the interval [0,π] is a limit point of the sequence Im  δ n , and every point of the intervals $$[\log \,\rho _{1},\log \,\rho _{2}]$$ , $$[\log \,1/\rho _{2},\log \,1/\rho _{1}]$$ is a limit point of the sequence Re  δ n .

5. (5)
There exist R = R(γ) > 0 and $$N = N(\gamma ) \in \mathbb{N}$$ such that there is no point of the sequence $$\zeta _{k} = \sqrt{z_{k}}$$ in the disks
$$\displaystyle{ \left \vert \zeta -\pi \mathit{in}\right \vert < R,\;n > N. }$$
(4.6.26)

It remains to consider the distribution of zeros of the function E α, β in the case α > 2.

### Theorem 4.11 ([PopSed11, p. 45]).

Let α > 2. Then all zeros z n of the Mittag-Leffler function E α,β with sufficiently large modulus are simple and the following asymptotic formula holds:
$$\displaystyle{ z_{n} = \left ( \frac{\pi } {\sin \,\pi /\alpha }\left (n -\frac{1} {2} -\frac{\beta -1} {\alpha } \right ) +\alpha _{n}\right )^{\alpha }, }$$
(4.6.27)
where the sequence α n is defined as described below:
1. (1)
If the pair (α,β) is not mentioned in(4.6.4)and(4.6.5),then
$$\displaystyle{\alpha _{n} = O\left (\mathrm{e}^{-\pi n(\cos \frac{\pi }{\alpha }-\cos \frac{3\pi } {\alpha } )/\sin \frac{\pi }{\alpha } }\right ).}$$

2. (2)
If 2 < α < 4, then
$$\displaystyle{\alpha _{n} = O\left (n^{-\alpha \mathrm{Re}\,\tau _{\beta }}\mathrm{e}^{-\pi n\cot \frac{\pi }{\alpha } }\right ).}$$

3. (3)
If α ≥ 4, then
$$\displaystyle{\alpha _{n} =\mathrm{ e}^{-\pi n\cot \frac{\pi }{\alpha } }\left (O\left (\mathrm{e}^{\pi n\cos \frac{3\pi } {\alpha } /\sin \frac{\pi }{\alpha } }\right ) + O\left (n^{-\alpha \mathrm{Re}\,\tau _{\beta }}\right )\right ).}$$

If β is real then all zeros z n with sufficiently large modulus are real too.

In a series of articles by different authors the following question, which is very important for applications, was discussed: “Are all zeros of the Mittag-Leffler function E α, β with α > 2 simple and negative?” This question goes back to an article by Wiman [Wim05b]. Several attempts to answer this question have shown its non-triviality. In [OstPer97] this question was reformulated as the following problem: “For any α ≥ 2, find a set W α consisting of those values of the positive parameter β such that all zeros of the Mittag-Leffler function E α, β are simple and negative.”

Let us give some answers to the above question, following [PopSed11].

### Theorem 4.12.

For any α > 2, β ∈ (0,2α − 1], all complex zeros $$(z_{n}(\alpha,\beta ))_{n\in \mathbb{N}}$$ of the Mittag-Leffler function E α,β are simple and negative and satisfy the following inequalities
$$\displaystyle\begin{array}{rcl} -\xi _{1}^{\alpha }(\alpha,\beta ) < z_{ 1}(\alpha,\beta ) < -\frac{\varGamma (\alpha +\beta )} {\varGamma (\beta )},& &{}\end{array}$$
(4.6.28)
$$\displaystyle\begin{array}{rcl} -\xi _{n}^{\alpha }(\alpha,\beta ) < z_{ n}(\alpha,\beta ) < -\xi _{n-1}^{\alpha }(\alpha,\beta ),\;n \geq 2,& &{}\end{array}$$
(4.6.29)
where
$$\displaystyle{\xi _{n}^{\alpha }(\alpha,\beta ) = \frac{\pi \left (n + \frac{\beta -1} {\alpha } \right )} {\sin \frac{\pi }{\alpha }}.}$$

If α ≥ 4, then all zeros are simple and negative for any β ∈ (0,2α].

### Theorem 4.13.

Let α ≥ 6, 0 < β ≤ 2α. Then for all $$n,1 \leq n \leq \left [ \frac{\alpha }{3}\right ] - 1$$ , the zeros z n (α,β) of the Mittag-Leffler function satisfy the following inequalities
$$\displaystyle{ -\sqrt{2} \frac{\varGamma (\alpha n+\beta )} {\varGamma (\alpha (n - 1)+\beta )} < z_{n}(\alpha,\beta ) < - \frac{\varGamma (\alpha n+\beta )} {\varGamma (\alpha (n - 1)+\beta )}. }$$
(4.6.30)

### Theorem 4.14.

For any $$N \in \mathbb{N}$$ , N ≥ 3, the zeros z n (N,N + 1) of the Mittag-Leffler function E N,N+1 (z) satisfy the relation
$$\displaystyle{ z_{n}(N,N + 1) = -\left [\frac{\pi n +\pi /2 +\alpha _{n}(N)} {\sin \,\pi /\alpha } \right ]^{\alpha },\;n \in \mathbb{N},\;n \geq \left [N/3\right ], }$$
(4.6.31)
where $$\alpha _{n}(N) \in \mathbb{R},\vert \alpha _{n}(N)\vert \leq x_{n}(N)$$ ,
$$\displaystyle{x_{n}(N) = \left \{\begin{array}{ll} \mathrm{exp}\{ -\pi n\cot \pi /\alpha \}, &3 \leq N \leq 6,\\ & \\ \mathrm{exp}\{ - 2\pi n\sin 2\pi /\alpha \}, &7 \leq N \leq 1,400,\\ & \\ 1.01\mathrm{exp}\{ - 2\pi n\sin 2\pi /\alpha \},&N > 1,400. \end{array} \right.}$$
If N ≥ 6, 1 ≤ n ≤ [N∕3] − 1, then
$$\displaystyle\begin{array}{rcl} & -\frac{((n+1)N)!} {(nN)!} \left (1 + \frac{3/2[((n+1)N)!]^{2}} {(nN)!((n+2)N)!}\min \{1,Nn^{-2}\}\right )& \\ & < z_{n}(N,N + 1) < -\frac{((n+1)N)!} {(nN)!}. &{}\end{array}$$
(4.6.32)

Next we present a few non-asymptotic results on the distribution of zeros of the Mittag-Leffler function.

### Theorem 4.15.

Let 0 < α < 1. Then
1. (1)

For $$\beta \in \left (\bigcup \limits _{n=0}^{\infty }[-n+\alpha,-n + 1]\right )\bigcup [1,+\infty )$$ the function E α,β (z) has no negative zero;

2. (2)

For $$\beta \in \bigcup \limits _{n=0}^{\infty }(-n,-n+\alpha )$$ the function E α,β (z) has one negative zero and it is simple.

### Theorem 4.16.

1. (I)
Let 0 < α < 1, β < 0. Then
1. (1)

For $$\beta \in [-2n - 1,-2n),n \in \mathbb{Z}_{+}$$ , the function E α,β (z) has one positive zero and it is simple;

2. (2)

For $$\beta \in [-2n,-2n + 1),n \in \mathbb{N}$$ , the set of zeros of the function E α,β (z) is either empty, or consists of two simple points, or consists of one double point.

2. (II)

The function E 1,β (z) has a unique simple positive zero, whenever $$\beta \in (-2n - 1,-2n),\;n \in \mathbb{Z}_{+}$$ , and has no positive zero, whenever $$\beta \in (-2n,-2n + 1),\;n \in \mathbb{N}$$ .

### Theorem 4.17.

1. (I)
Let one of the following conditions be satisfied:
1. (1)

0 < α < 1,   β ∈ [1,1 + α],

2. (2)

1 < α < 2,   β ∈ [α − 1,1] ∪ [α,2].

Then all zeros of the function E α,β (z) are located outside of the angle $$\vert \mathrm{arg}\,z\vert \leq \frac{\pi \alpha } {2}$$ .

2. (II)

Let 1 < α < 2,β = 0. Then all zeros (≠0) are located outside of the angle $$\vert \mathrm{arg}\,z\vert \leq \frac{\pi \alpha } {2}$$ .

## 4.7 Computations with the Two-Parametric Mittag-Leffler Function

Mittag-Leffler type functions play a basic role in the solution of fractional differential equations and integral equations of Abel type. Therefore, it seems important as a first step to develop their theory and stable methods for their numerical computation.

Integral representations play a prominent role in the analysis of entire functions. For the two-parametric Mittag-Leffler function (4.1.1) such representations in the form of an improper integral along the Hankel loop have been treated in the case β = 1 and in the general case with arbitrary β by Erdélyi et al. [Bat-3] and Dzherbashyan [Dzh54a, Dzh66]. They considered the representations
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) = \frac{1} {2\pi i\alpha }\int _{\gamma (\epsilon;\delta )}\frac{\mathrm{e}^{\zeta ^{1/\alpha } }\zeta ^{(1-\beta )/\alpha }} {\zeta -z} \mathrm{d}\zeta,\;\;\;z \in G^{(-)}(\epsilon;\delta ),& &{}\end{array}$$
(4.7.1)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) = \frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } } + \frac{1} {2\pi i\alpha }\int _{\gamma (\epsilon;\delta )}\frac{\mathrm{e}^{\zeta ^{1/\alpha } }\zeta ^{(1-\beta )/\alpha }} {\zeta -z} \mathrm{d}\zeta,\;\;\;z \in G^{(+)}(\epsilon;\delta ),& &{}\end{array}$$
(4.7.2)
under the conditions
$$\displaystyle{ 0 <\alpha < 2,\pi \alpha /2 <\delta <\min \{\pi,\pi \alpha \}. }$$
(4.7.3)
The contour γ(ε; δ) consists of two rays S δ (arg ζ = −δ, | ζ | ≥ ε) and S δ (arg ζ = δ, | ζ | ≥ ε) and a circular arc C δ (0; ε) ( | ζ |  = ε, −δ ≤ arg ≤ δ). On its left side there is a region G (−)(ε, δ), on its right side a region G (+)(ε, δ).
Using the integral representations in (4.7.1) and (4.7.2) it is not difficult to obtain asymptotic expansions for the Mittag-Leffler function in the complex plane (see Theorems 4.3 and 4.4). Let 0 < α < 2, β be an arbitrary number, and δ be chosen to satisfy the condition (4.7.3). Then we have, for any $$p \in \mathbb{N}$$ (and for p = 0 if the “empty sum convention” is adopted) and | z | →
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } } -\sum \limits _{k=1}^{p} \frac{z^{-k}} {\varGamma (\beta -\alpha k)} + O\left (\vert z\vert ^{-1-p}\right ),\,\forall z,\vert \mathrm{arg}\,z\vert \leq \delta. }$$
(4.7.4)
Analogously, for all z, δ ≤ | arg z | ≤ π, we have
$$\displaystyle{ E_{\alpha,\beta }(z) = -\sum \limits _{k=1}^{p} \frac{z^{-k}} {\varGamma (\beta -\alpha k)} + O\left (\vert z\vert ^{-1-p}\right ). }$$
(4.7.5)
These formulas are used in the numerical algorithm presented in this section (proposed in [GoLoLu02]). In what follows attention is restricted to the case $$\beta \in \mathbb{R}$$, the most important one in the applications. For the purpose of numerical computation we look for integral representations better suited than (4.7.1) and (4.7.2). Denoting
$$\displaystyle{\phi (\zeta,z) = \frac{\mathrm{e}^{\zeta ^{1/\alpha } }\zeta ^{(1-\beta )/\alpha }} {\zeta -z} }$$
we represent the integral in formulas (4.7.1) and (4.7.2) in the form
$$\displaystyle\begin{array}{rcl} & I = \frac{1} {2\pi i\alpha }\int _{\gamma (\epsilon;\delta )}\phi (\zeta,z)\mathrm{d}\zeta = \frac{1} {2\pi i\alpha }\int _{S_{-\delta }}\phi (\zeta,z)\mathrm{d}\zeta & \\ & + \frac{1} {2\pi i\alpha }\int _{C_{\delta }(0;\epsilon )}\phi (\zeta,z)\mathrm{d}\zeta + \frac{1} {2\pi i\alpha }\int _{S_{\delta }}\phi (\zeta,z)\mathrm{d}\zeta = I_{1} + I_{2} + I_{3}.&{}\end{array}$$
(4.7.6)
The integrals I 1, I 2 and I 3 have to be transformed. For I 1 we take $$\zeta = r\mathrm{e}^{-i\delta }$$, ε ≤ r < , and get
$$\displaystyle{ I_{1} = \frac{1} {2\pi i\alpha }\int _{S_{-\delta }}\phi (\zeta,z)\mathrm{d}\zeta = \frac{1} {2\pi i\alpha }\int _{+\infty }^{\epsilon }\frac{\mathrm{e}^{(r\mathrm{e}^{-i\delta }) ^{1/\alpha } }(r\mathrm{e}^{-i\delta })^{(1-\beta )/\alpha }} {(r\mathrm{e}^{-i\delta }) - z} \mathrm{e}^{-i\delta }\mathrm{d}r. }$$
(4.7.7)
Analogously, by using $$\zeta = r\mathrm{e}^{i\delta }$$, ε ≤ r < ,
$$\displaystyle{ I_{3} = \frac{1} {2\pi i\alpha }\int _{S_{\delta }}\phi (\zeta,z)\mathrm{d}\zeta = \frac{1} {2\pi i\alpha }\int _{\epsilon }^{+\infty }\frac{\mathrm{e}^{(r\mathrm{e}^{i\delta }) ^{1/\alpha } }(r\mathrm{e}^{i\delta })^{(1-\beta )/\alpha }} {(r\mathrm{e}^{i\delta }) - z} \mathrm{e}^{i\delta }\mathrm{d}r. }$$
(4.7.8)
For I 2 with $$\zeta =\epsilon \mathrm{ e}^{i\varphi },\;-\delta \leq \varphi \leq \delta$$
$$\displaystyle\begin{array}{rcl} & I_{2} = \frac{1} {2\pi i\alpha }\int _{C_{\delta }(0;\epsilon )}\phi (\zeta,z)\mathrm{d}\zeta = \frac{1} {2\pi i\alpha }\int _{-\delta }^{\delta }\frac{\mathrm{e}^{(\epsilon \mathrm{e}^{i\varphi })^{1/\alpha }}(\epsilon \mathrm{e}^{i\varphi })^{(1-\beta )/\alpha }} {(\epsilon \mathrm{e}^{i\varphi })-z} \epsilon i\mathrm{e}^{i\varphi }\mathrm{d}\varphi & \\ & = \frac{\epsilon ^{1+(1-\beta )/\alpha }} {2\pi \alpha } \int _{-\delta }^{\delta }\frac{\mathrm{e}^{\epsilon ^{1/\alpha }(\mathrm{e}^{i\varphi /\alpha }) }\mathrm{e}^{(i\varphi (1-\beta )/\alpha +1)}} {\epsilon \mathrm{e}^{i\varphi }-z} \mathrm{d}\varphi =\int _{ -\delta }^{\delta }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi,&{}\end{array}$$
(4.7.9)
where
$$\displaystyle\begin{array}{rcl} & P[\alpha,\beta,\epsilon,\varphi,z] = \frac{\epsilon ^{1+(1-\beta )/\alpha }} {2\pi \alpha } \frac{\mathrm{e}^{\epsilon ^{1/\alpha }\cos \,(\varphi /\alpha ) }(\cos \,(\omega )+i\sin \,(\omega ))} {\epsilon \mathrm{e}^{i\varphi }-z},& \\ & \omega =\epsilon ^{1/\alpha }\sin \,(\varphi /\alpha ) +\varphi (1 + (1-\beta )/\alpha ). &{}\end{array}$$
(4.7.10)
The sum I 1 and I 3 can be rewritten as
$$\displaystyle{ I_{1} + I_{3} =\int _{ \epsilon }^{+\infty }K[\alpha,\beta,\delta,r,z]\mathrm{d}r, }$$
(4.7.11)
where
$$\displaystyle\begin{array}{rcl} & K[\alpha,\beta,\delta,r,z] = \frac{1} {2\pi \alpha }r^{(1-\beta )/\alpha }\mathrm{e}^{r^{1/\alpha }\cos \,(\delta /\alpha ) } \frac{r\sin \,(\psi -\delta )-z\sin \,(\psi )} {r^{2}-2\mathit{rz}\cos \,(\delta )+z^{2}},& \\ & \psi = r^{1/\alpha }\sin \,(\delta /\alpha ) +\varphi (1 + (1-\beta )/\alpha ). &{}\end{array}$$
(4.7.12)
Using the above notation formulas (4.7.1) and (4.7.2) can be rewritten in the form
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\int _{ \epsilon }^{+\infty }K[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}r +\int _{ -\delta }^{\delta }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi,\;\;\;z \in G^{(-)}(\epsilon;\delta ),& &{}\end{array}$$
(4.7.13)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\int _{ \epsilon }^{+\infty }K[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}r +\int _{ -\delta }^{\delta }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi & & \\ +\frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } },\;\;\;z \in G^{(+)}(\epsilon;\delta ).& &{}\end{array}$$
(4.7.14)
Let us now consider the case 0 < α ≤ 1, z ≠ 0. By condition (4.7.3) we can choose δ = min {π, π α} = π α. Then the kernel function (4.7.12) looks simpler:
$$\displaystyle\begin{array}{rcl} K[\alpha,\beta,\pi \alpha,r,z] = \tilde{K}[\alpha,\beta,r,z]& & \\ = \frac{1} {2\pi \alpha }r^{(1-\beta )/\alpha }\mathrm{e}^{-r^{1/\alpha } }\frac{r\sin \,(\pi (1-\beta )) - z\sin \,(\pi (1 -\beta +\alpha )} {r^{2} - 2\mathit{rz}\cos \,(\pi \alpha ) + z^{2}}.& &{}\end{array}$$
(4.7.15)
We distinguish three possibilities for arg z in the formulas (4.7.13)–(4.7.15) for the computation of the function E α, β (z) at an arbitrary point $$z \in \mathbb{C},z\not =0$$, namely
1. (A)

| arg z |  > π α;

2. (B)

| arg z |  = π α;

3. (C)

| arg z |  < π α.

The following theorems give representation formulas suitable for further numerical calculations.

### Theorem 4.18.

Under the conditions
$$\displaystyle{0 <\alpha \leq 1,\;\beta \in \mathbb{R},\;\vert \mathrm{arg}\,z\vert >\pi \alpha,\;z\not =0,}$$
the function E α,β (z) has the representations
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\int _{ \epsilon }^{+\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r +\int _{ -\pi \alpha }^{\pi \alpha }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi,\;\epsilon > 0,\;\beta \in \mathbb{R},& &{}\end{array}$$
(4.7.16)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\int _{ 0}^{+\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r,\;\mathrm{if}\;\beta < 1+\alpha,& &{}\end{array}$$
(4.7.17)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) = -\frac{\sin \,(\pi \alpha )} {\pi \alpha } \int _{0}^{+\infty } \frac{\mathrm{e}^{-r^{1/\alpha } }} {r^{2} - 2\mathit{rz}\cos \,(\pi \alpha ) + z^{2}}\,\mathrm{d}r -\frac{1} {z},\;\mathrm{if}\;\beta = 1 +\alpha.& &{}\end{array}$$
(4.7.18)

### Theorem 4.19.

Under the conditions
$$\displaystyle{0 <\alpha \leq 1,\;\beta \in \mathbb{R},\;\vert \mathrm{arg}\,z\vert =\pi \alpha,\;z\not =0,}$$
the function E α,β (z) has the representations
$$\displaystyle{ E_{\alpha,\beta }(z) =\int _{ \epsilon }^{+\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r +\int _{ -\pi \alpha }^{\pi \alpha }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi,\;\epsilon > \vert z\vert, }$$
(4.7.19)
where the kernel functions $$\tilde{K}[\alpha,\beta,r,z]$$ and $$P[\alpha,\beta,\epsilon,\varphi,z]$$ are given by the formulas(4.7.15) and (4.7.10),respectively.

### Theorem 4.20.

Under the conditions
$$\displaystyle{0 <\alpha \leq 1,\;\beta \in \mathbb{R},\;\vert \mathrm{arg}\,z\vert <\pi \alpha,\;z\not =0,}$$
the function E α,β (z) has the representations
$$\displaystyle\begin{array}{rcl} & E_{\alpha,\beta }(z) =\int _{ \epsilon }^{+\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r +\int _{ -\pi \alpha }^{\pi \alpha }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi & \\ & +\frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } },\;0 <\epsilon < \vert z\vert,\;\beta \in \mathbb{R}; &{}\end{array}$$
(4.7.20)
$$\displaystyle\begin{array}{rcl} E_{\alpha,\beta }(z) =\int _{ 0}^{+\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r + \frac{1} {\alpha } z^{(1-\beta )/\alpha }\mathrm{e}^{z^{1/\alpha } },\;\mathrm{if}\;\beta < 1+\alpha;& &{}\end{array}$$
(4.7.21)
$$\displaystyle\begin{array}{rcl} & E_{\alpha,\beta }(z) = -\frac{\sin \,(\pi \alpha )} {\pi \alpha } \int _{0}^{+\infty } \frac{\mathrm{e}^{-r^{1/\alpha }}} {r^{2}-2\mathit{rz}\cos \,(\pi \alpha )+z^{2}} \,\mathrm{d}r& \\ & -\frac{1} {z} + \frac{1} {\alpha z}\mathrm{e}^{z^{1/\alpha } },\;\mathrm{if}\;\beta = 1+\alpha, &{}\end{array}$$
(4.7.22)
where the kernel functions $$\tilde{K}[\alpha,\beta,r,z]$$ and $$P[\alpha,\beta,\epsilon,\varphi,z]$$ are given by formulas(4.7.15)and(4.7.10),respectively.
Therefore, for arbitrary z ≠ 0 and 0 < α ≤ 1 the Mittag-Leffler function E α, β (z) can be represented by one of the formulas (4.7.16)–(4.7.22). These formulas are used for numerical computation if q <  | z | , 0 < q < 1 and 0 < α ≤ 1. In the case | z | ≤ q, 0 < q < 1, the values of the Mittag-Leffler function are computed for arbitrary α > 0 by using series representation (4.1.1). The case α > 1 is reduced to the case 0 < α ≤ 1 by using recursion formulas. To compute the function E α, β (z) for arbitrary $$z \in \mathbb{C}$$ with arbitrary indices $$\alpha > 0,\beta \in \mathbb{R}$$, three possibilities are distinguished:
1. (A)

| z | ≤ q, 0 < q < 1 (q is a fixed number), α > 0;

2. (B)

| z |  > q, 0 < α ≤ 1;

3. (C)

| z |  > q, α > 1.

In each case the Mittag-Leffler function can be computed with the prescribed accuracy ρ > 0. In the case (A) the computations are based on the following result:

### Theorem 4.21.

In the case (A) the Mittag-Leffler function can be computed with the prescribed accuracy ρ > 0 by use of the formula
$$\displaystyle{ E_{\alpha,\beta }(z) =\sum \limits _{ k=0}^{k_{0} } \frac{z^{k}} {\varGamma (\alpha k+\beta )} +\mu (z),\;\;\;\vert \mu (z)\vert <\rho, }$$
(4.7.23)
where
$$\displaystyle{k_{0} =\max \,\{ [(1-\beta )/\alpha ] + 1;[\ln \,(\rho (1 -\vert z\vert ))/\ln \,(\vert z\vert )]\}.}$$
In the case (B) one can use the integral representations (4.7.16)–(4.7.22). For this it is necessary to compute numerically either the improper integral
$$\displaystyle{I =\int \limits _{ a}^{\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r,\;\;\;a \in \{ 0;\epsilon \},}$$
and/or the integral
$$\displaystyle{J =\int \limits _{ -\pi \alpha }^{\pi \alpha }P[\alpha,\beta,\epsilon,\varphi,z]\mathrm{d}\varphi,\;\;\;\epsilon > 0.}$$
To calculate the first (improper) integral I of the bounded function $$\tilde{K}[\alpha,\beta,r,z]$$ the following theorem is used:

### Theorem 4.22.

The representation
$$\displaystyle{ I =\int _{ a}^{\infty }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r =\int _{ a}^{r_{0} }\tilde{K}[\alpha,\beta,r,z]\mathrm{d}r +\mu (r),\;\;\;\vert \mu (r)\vert \leq \rho,\;\;\;a \in \{ 0;\epsilon \}, }$$
(4.7.24)
is valid under the conditions
$$\displaystyle\begin{array}{rcl} & 0 <\alpha \leq 1,\;\;\;\vert z\vert > q > 0, & {}\\ & r_{0} = \left \{\begin{array}{lll} \max \,\{1,2\vert z\vert,(-\ln \,(\pi \rho /6))^{\alpha }\}, &\mathrm{if}&\beta \geq 0;\\ \\ \max \,\{(1 + \vert \beta \vert )^{\alpha },2\vert z\vert,(-2\ln \,(\pi \rho /(6(\vert \beta \vert + 2)(2\vert \beta \vert )^{\vert \beta \vert })))^{\alpha }\},&\mathrm{if}&\beta < 0. \end{array} \right.& {}\\ \end{array}$$

The second integral J (the integrand $$P[\alpha,\beta,\epsilon,\varphi,z]$$ being bounded and the limits of integration being finite) can be calculated with prescribed accuracy ρ > 0 by one of many product quadrature methods.

In the case (C) the following recursion formula is used (see [Dzh66])
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {m}\sum \limits _{l=0}^{m-1}E_{\alpha /m,\beta }(z^{1/m}\mathrm{e}^{2\pi \mathit{il}/m}),\;\;\;m \geq 1. }$$
(4.7.25)
In order to reduce case (C) to the cases (B) and (A) one can take m = [α] + 1 in formula (4.7.25). Then 0 < αm. 1, and we calculate the functions $$E_{\alpha /m,\beta }(z^{1/m}\mathrm{e}^{2\pi \mathit{il}/m})$$ as in case (A) if | z | 1∕m  ≤ q < 1, and as in case (B) if | z | 1∕m  > q.

### Remark 4.23.

The ideas and techniques employed for the Mittag-Leffler function can be used for numerical calculation of other functions of hypergeometric type. In particular, the same method with some small modifications can be applied to the Wright function, which plays a very important role in the theory of partial differential equations of fractional order (see, e.g., [BucLuc98, GoLuMa00, Luc00, LucGor98, MaLuPa01]). To this end, the following representations of the Wright function (see [GoLuMa99]) can be used in place of the corresponding representations of the Mittag-Leffler function:
$$\displaystyle\begin{array}{rcl} & \phi (\rho,\beta;z) =\sum \limits _{ k=0}^{\infty } \frac{z^{k}} {\varGamma (\rho k+\beta )},\;\;\;\rho > -1,\;\;\;\beta \in \mathbb{C}, & {}\\ & \phi (\rho,\beta;z) = \frac{1} {2\pi i}\int _{\mathit{Ha}}\mathrm{e}^{\zeta +z\zeta ^{-\rho } }\zeta ^{-\beta }\mathrm{d}\zeta,\;\;\;\rho > -1,\;\;\;\beta \in \mathbb{C},& {}\\ \end{array}$$
where Ha denotes the Hankel path in the ζ-plane with a cut along the negative real semi-axis arg ζ = π.

## 4.8 Extension for Negative Values of the First Parameter

The two-parametric Mittag-Leffler function (4.1.1), defined in the form of a series, exists only for the values of parameters Re α > 0 and $$\beta \in \mathbb{C}$$. However, by using an existing integral representation formula for the two-parametric Mittag-Leffler function (see, e.g., [Dzh66, KiSrTr06]) it is possible to determine an extension of the two-parametric Mittag-Leffler function to other values of the first parameter.

In this section we present an analytic continuation of the Mittag-Leffler function depending on real parameters $$\alpha,\beta \in \mathbb{R}$$ by extending its domain to negative $$\alpha < 0$$. Here we follow the results of [Han-et-al09].

The following integral representation of the Mittag-Leffler function is known (see, e.g., [Dzh66, KiSrTr06])
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {2\pi }\int _{\mathit{Ha}} \frac{t^{\alpha -\beta }\mathrm{e}^{t}} {t^{\alpha } - z}\mathrm{d}t,\;\;\;z \in \mathbb{C}, }$$
(4.8.1)
where the contour of integration Ha is the so-called Hankel path, a loop starting and ending at −, and encircling the disk | t | ≤ | z | 1∕α counterclockwise.
To find an equation which can determine E α, β (z), we rewrite the integral representation of the Mittag-Leffler function (4.8.1) as
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {2\pi }\int _{\mathit{Ha}} \frac{\mathrm{e}^{t}} {t^{\beta } - zt^{-\alpha +\beta }}\mathrm{d}t }$$
(4.8.2)
and expand part of the integrand in (4.8.2) in partial fractions as follows:
$$\displaystyle{ \frac{1} {t^{\beta } - zt^{-\alpha +\beta }} = \frac{1} {t^{\beta }} - \frac{1} {t^{\beta } - z^{-1}t^{\alpha +\beta }}. }$$
(4.8.3)
Substituting Eq. (4.8.3) into (4.8.2) yields
$$\displaystyle{ E_{\alpha,\beta }(z) = \frac{1} {2\pi }\int _{\mathit{Ha}}\frac{\mathrm{e}^{t}} {t^{\beta }} \mathrm{d}t -\frac{1} {2\pi }\int _{\mathit{Ha}} \frac{\mathrm{e}^{t}} {t^{\beta } - z^{-1}t^{\alpha +\beta }}\mathrm{d}t,\;\;\;z \in \mathbb{C}\setminus \{0\}. }$$
(4.8.4)
This gives the following definition of the Mittag-Leffler function with negative value of the first parameter:
$$\displaystyle{ E_{-\alpha,\beta }(z) = \frac{1} {\varGamma (\beta )} - E_{\alpha,\beta }\left (\frac{1} {z}\right ),\;\;\;\alpha > 0,\;\beta \in \mathbb{R};z \in \mathbb{C}\setminus \{0\}. }$$
(4.8.5)
In particular,
$$\displaystyle{E_{-\alpha }(z):= E_{-\alpha,1}(z) = 1 - E_{\alpha }\left (\frac{1} {z}\right ),\;\;\;\alpha > 0;z \in \mathbb{C}\setminus \{0\}.}$$
By using the known recurrence formula
$$\displaystyle{E_{\alpha,\beta }(z) = \frac{1} {\varGamma (\beta )} + zE_{\alpha,\alpha +\beta }\left (z\right )}$$
we obtain another variant of the definition (4.8.5)
$$\displaystyle{ E_{-\alpha,\beta }(z) = -\frac{1} {z}E_{\alpha,\alpha +\beta }\left (\frac{1} {z}\right ),\;\;\;\alpha > 0,\;\beta \in \mathbb{R};z \in \mathbb{C}\setminus \{0\}. }$$
(4.8.6)

Direct calculations show that definitions (4.8.5) and (4.8.6) determine the same function, analytic in $$\mathbb{C}\setminus \{0\}$$.

By taking the limit in (4.8.5) as α → +0 we get the definition of E 0, β (z)
$$\displaystyle{ E_{0,\beta }(z) = \frac{1} {\varGamma (\beta )(1 - z)},\;\;\;\beta \in \mathbb{R};\vert z\vert < 1. }$$
(4.8.7)
Obviously, this function can be analytically continued in the domain $$\mathbb{C}\setminus \{1\}$$.
From the definition of the two-parametric Mittag-Leffler function (4.1.1) we obtain the following series representation of the extended Mittag-Leffler function (i.e. the function corresponding to negative values of the first parameter):
$$\displaystyle{ E_{-\alpha,\beta }(z) = -\sum \limits _{k=1}^{\infty } \frac{1} {\varGamma (\alpha z+\beta )}\left (\frac{1} {z}\right )^{k},\;\;\;z \in \mathbb{C}\setminus \{0\}. }$$
(4.8.8)

By using this representation and the above definitions of the extended Mittag-Leffler function (4.8.5) (or (4.8.6)) one can obtain functional, differential and recurrence relations which are analogous to corresponding relations for the two-parametric function with positive first parameter.

### Proposition 4.24.

Let α > 0, $$\beta \in \mathbb{R}$$ . Then the following formulas are valid for all values of parameters for which all items are defined.
1. A.
Recurrence relations.
$$\displaystyle\begin{array}{rcl} E_{-\alpha,\beta }(z) + E_{-\alpha,\beta }(-z) = 2E_{-2\alpha,\beta }(z^{2});& & {}\end{array}$$
(4.8.9)
$$\displaystyle\begin{array}{rcl} E_{-n\alpha,\beta }(z) = \frac{1} {n}\sum \limits _{k=0}^{n-1}E_{ -\alpha,\beta }(z\mathrm{e}^{-2\pi \mathit{ik}/n});& & {}\end{array}$$
(4.8.10)
$$\displaystyle\begin{array}{rcl} E_{-\alpha,\beta }(z) = z^{n}E_{ -\alpha,\beta -\alpha n}(z) +\sum \limits _{ k=0}^{n-1} \frac{z^{k}} {\varGamma (\beta -\alpha k)};& & {}\end{array}$$
(4.8.11)
$$\displaystyle\begin{array}{rcl} E_{-\alpha }(-z) = E_{-2\alpha }(z^{2}) + E_{ -2\alpha }(z^{2}) - zE_{ -2\alpha,\alpha +1}(z^{2}).& & {}\end{array}$$
(4.8.12)

2. B.
Differential relations.
$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}} {\mathrm{d}z}\left [z^{1-\beta }E_{ -\alpha,\beta }(z^{\alpha })\right ] = -z^{-\beta }E_{ -\alpha,\beta -1}(z^{\alpha });& & {}\end{array}$$
(4.8.13)
$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}} {\mathrm{d}z}\left [E_{-\alpha }(z)\right ] = - \frac{1} {\varGamma (\alpha +1)} + \frac{1} {\alpha } E_{-\alpha,\alpha }(z);& & {}\end{array}$$
(4.8.14)
$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}^{n}} {\mathrm{d}z^{n}}\left [E_{-n}(z^{-n})\right ] = E_{ -n}(z^{-n}).& & {}\end{array}$$
(4.8.15)

3. C.
Functional relations.
$$\displaystyle\begin{array}{rcl} \int \limits _{0}^{z}E_{ -\alpha,\beta }(t^{\alpha })t^{-\beta -1}\mathrm{d}t = -z^{-\beta }E_{ -\alpha,\beta +1}(z^{\alpha });& & {}\end{array}$$
(4.8.16)
$$\displaystyle\begin{array}{rcl} \mathcal{L}\left [z^{\beta -1}E_{ -\alpha,\beta }\left ( \frac{1} {\pm \mathit{az}^{\alpha }}\right )\right ] = \frac{\mp a} {s^{\beta }(s^{\alpha } \mp a)}.& & {}\end{array}$$
(4.8.17)

## 4.9 Further Analytic Properties

Here we present a number of integral and differential formulas for the Mittag-Leffler function. The integral relations below can easily be established by applying classical formulas for Gamma and Beta functions (see Appendix A) and other techniques.
$$\displaystyle\begin{array}{rcl} \int \limits _{0}^{\infty }\mathrm{e}^{-x}x^{\beta -1}E_{\alpha,\beta }\left (x^{\alpha }z\right )\mathrm{d}x = \frac{1} {1 - z}\;\;\;(\vert z\vert < 1,\;\alpha,\beta \in \mathbb{C},\;\mathrm{Re}\,\alpha > 0,\;\mathrm{Re}\,\beta > 0).& &{}\end{array}$$
(4.9.1)
$$\displaystyle\begin{array}{rcl} \int \limits _{0}^{x}\left (x-\zeta \right )^{\beta -1}E_{\alpha }\left (\zeta ^{\alpha }\right )\mathrm{d}\zeta =\varGamma (\beta )x^{\beta }E_{\alpha,\beta +1}(x^{\alpha })\;\;\;(\alpha,\beta \in \mathbb{C},\;\mathrm{Re}\,\alpha >0,\;\mathrm{Re}\,\beta >0).& &{}\end{array}$$
(4.9.2)
$$\displaystyle\begin{array}{rcl} \int \limits _{0}^{\infty }\mathrm{e}^{-\mathit{sx}}x^{m\alpha +\beta -1}E_{\alpha,\beta }^{(m)}\left (\pm \lambda x^{\alpha }\right )\mathrm{d}x = \frac{m!S^{\alpha -\beta }} {s^{\alpha }\mp \lambda },& &{}\end{array}$$
(4.9.3)
where $$\vert \lambda s^{-\alpha }\vert < 1,\;\alpha,\beta \in \mathbb{C},\;\mathrm{Re}\,\alpha > 0,\;\mathrm{Re}\,\beta > 0$$.
$$\displaystyle\begin{array}{rcl} & \int \limits _{0}^{x}\zeta ^{\beta _{1}-1}E_{\alpha,\beta _{ 1}}\left (\lambda \zeta ^{\alpha }\right )(x-\zeta )^{\beta _{2}-1}E_{\alpha,\beta _{2}}\left (\mu (x-\zeta )^{\alpha }\right )\mathrm{d}\zeta & \\ & = \frac{x^{\beta _{1}+\beta _{2}-1}} {\lambda -\mu } \left \{E_{\alpha,\beta _{1}+\beta _{2}}\left (\lambda x^{\alpha }\right ) - E_{\alpha,\beta _{1}+\beta _{2}}\left (\mu x^{\alpha }\right )\right \}.&{}\end{array}$$
(4.9.4)
The differential relations below follow by direct calculation:
$$\displaystyle\begin{array}{rcl} \left ( \frac{\partial } {\partial z}\right )^{n}\,\left [z^{\beta -1}E_{\alpha,\beta }(\lambda z^{\alpha })\right ] = z^{\beta -n-1}E_{\alpha,\beta -n}(\lambda z^{\alpha }).& &{}\end{array}$$
(4.9.5)
$$\displaystyle\begin{array}{rcl} \left (\frac{\partial } {\partial \lambda }\right )^{n}\,\left [z^{\beta -1}E_{\alpha,\beta }(\lambda z^{\alpha })\right ] = n!z^{\alpha n+\beta -1}E_{\alpha,\alpha n+\beta }^{n+1}(\lambda z^{\alpha }),& &{}\end{array}$$
(4.9.6)
where $$E_{\alpha,\alpha n+\beta }^{n+1}(z)$$ is the Prabhakar three-parametric function (see Sect.  below).
A special case of the two-parametric Mittag-Leffler function (the so-called α-exponential function ) is of interest for many applications. It is defined in the following way:
$$\displaystyle{ e_{\alpha }^{\lambda z}:= z^{\alpha -1}E_{\alpha,\alpha }(\lambda z^{\alpha })\;\;\;(z \in \mathbb{C}\setminus \{0\},\lambda \in \mathbb{C}). }$$
(4.9.7)
For all $$\alpha \in \mathbb{C},\,\mathrm{Re}\,\alpha > 0$$, it can be represented in the form of the series
$$\displaystyle{ e_{\alpha }^{\lambda z} = z^{\alpha -1}\sum \limits _{ k=0}^{\infty }\lambda ^{k} \frac{z^{\alpha k}} {\varGamma \left ((k + 1)\alpha \right )}, }$$
(4.9.8)
which converges in $$\mathbb{C}\setminus \{0\}$$ and determines in this domain an analytic function. The simple properties of this function:
$$\displaystyle\begin{array}{rcl} (1)\;\lim _{z\rightarrow 0}z^{1-\alpha }e_{\alpha }^{\lambda z} = \frac{1} {\varGamma (\alpha )}\;\;\;(\mathrm{Re}\,\alpha > 0),& &{}\end{array}$$
(4.9.9)
$$\displaystyle\begin{array}{rcl} (2)\;e_{1}^{\lambda z} =\mathrm{ e}^{\lambda z},& &{}\end{array}$$
(4.9.10)
justify its name. However, the α-exponential function does not satisfy the main property of the exponential function, i.e.,
$$\displaystyle{ e_{\alpha }^{\lambda z}e_{\alpha }^{\mu z}\not =e_{\alpha }^{(\lambda +\mu )z}. }$$
(4.9.11)
For 0 < α < 2, the α-exponential function satisfies a simple asymptotic relation
$$\displaystyle{ e_{\alpha }^{\lambda z} = \frac{\lambda ^{(1-\alpha )/\alpha }} {\alpha } \mbox{ exp}\{\lambda ^{1/\alpha }z\} -\sum \limits _{ k=1}^{N-1}\frac{\lambda ^{-k-1}} {\varGamma (-\alpha k)} \frac{1} {z^{\alpha k+1}} + O\left ( \frac{1} {z^{\alpha N+1}}\right ), }$$
(4.9.12)
where z → , $$N \in \mathbb{N}\setminus \{1\}$$, | arg(λ z α ) | ≤ μ, $$\frac{\pi \alpha }{2} <\mu <\min \{\pi,\pi \alpha \}$$, and
$$\displaystyle{ e_{\alpha }^{\lambda z} = -\sum \limits _{ k=1}^{N-1}\frac{\lambda ^{-k-1}} {\varGamma (-\alpha k)} \frac{1} {z^{\alpha k+1}} + O\left ( \frac{1} {z^{\alpha N+1}}\right ), }$$
(4.9.13)
where z → , $$N \in \mathbb{N}\setminus \{1\}$$, μ ≤ | arg(λ z α ) | ≤ π.

When α ≥ 2, the asymptotic behaviour at infinity of the α-exponential function is more complicated (see, e.g., [KiSrTr06, pp. 51–52]).

## 4.10 The Two-Parametric Mittag-Leffler Function of a Real Variable

### 4.10.1 Integral Transforms of the Two-Parametric Mittag-Leffler Function

The following form of the Laplace transform of the two-parametric Mittag-Leffler function is most often used in applications:
$$\displaystyle{ \left (\mathcal{L}\,t^{\beta -1}E_{\alpha,\beta }(\lambda t^{\alpha })\right )(s) = \frac{s^{\alpha -\beta }} {s^{\alpha }-\lambda }\;\;\;(\mathrm{Re}\,s > 0,\;\lambda \in \mathbb{C},\;\vert \lambda s^{-\alpha }\vert < 1). }$$
(4.10.1)
It can be shown directly that the Laplace transform of the two-parametric Mittag-Leffler function E α, β (t) is given in terms of the Wright function (see, e.g., [KiSrTr06, p. 44])
$$\displaystyle{ \left (\mathcal{L}\,E_{\alpha,\beta }(t)\right )(s) = \frac{1} {s}_{2}\varPsi _{1}\left [\begin{array}{l} (1,1),(1,1)\\ (\alpha,\beta ) \end{array} \bigg\vert \frac{1} {s}\right ]\;\;\;(\mathrm{Re}\,s > 0). }$$
(4.10.2)
From the Mellin–Barnes integral representation of the two-parametric Mittag-Leffler function we arrive at the following formula for the Mellin transform of this function
$$\displaystyle{ \left (\mathcal{M}\,E_{\alpha,\beta }(-t)\right )(s) =\int \limits _{ 0}^{\infty }E_{\alpha,\beta }(-t)t^{s-1}\mathrm{d}t = \frac{\varGamma (s)\varGamma (1 - s)} {\varGamma (\beta -\alpha s)} \;\;\;(0 < \mathrm{Re} < 1). }$$
(4.10.3)
To conclude this subsection, we consider the Fourier transform of the two-parametric Mittag-Leffler function E α, β ( | t | ) with α > 1. Performing a term-by-term integration of the series we get the formula (α > 1):
$$\displaystyle{ \left (\mathcal{F}\,E_{\alpha,\beta }(\vert t\vert )\right )(x):=\int \limits _{ -\infty }^{+\infty }\mathrm{e}^{\mathit{ixt}}E_{\alpha,\beta }(\vert t\vert )\mathrm{d}t = \frac{\delta (x)} {\varGamma (\beta )} -\frac{2} {x^{2}}_{2}\varPsi _{1}\left [\begin{array}{l} (2,2),(1,1)\\ (\alpha +\beta, 2\alpha ) \end{array} \bigg\vert - \frac{1} {x^{2}}\right ], }$$
(4.10.4)
where δ(⋅ ) is the Dirac delta function.
Since for all t
$$\displaystyle{ E_{\alpha,\beta }(\vert t\vert ) - \frac{1} {\varGamma (\beta )} = \vert t\vert E_{\alpha,\alpha +\beta }(\vert t\vert ), }$$
(4.10.5)
formula (4.10.4) can be simplified
$$\displaystyle{ \left (\mathcal{F}\,\vert t\vert E_{\alpha,\alpha +\beta }(\vert t\vert )\right )(x) = -\frac{2} {x^{2}}_{2}\varPsi _{1}\left [\begin{array}{l} (2,2),(1,1)\\ (\alpha +\beta, 2\alpha ) \end{array} \bigg\vert - \frac{1} {x^{2}}\right ]\;(\alpha > 1,\beta \in \mathbb{C}). }$$
(4.10.6)

### 4.10.2 The Complete Monotonicity Property

Let us show that the generalized Mittag-Leffler function E α, β (−x) possesses the complete monotonicity property for 0 ≤ α ≤ 1, β ≥ α. In fact, this result follows from the complete monotonicity of the classical Mittag-Leffler function E α (−x) due to the following technical lemmas.

### Lemma 4.25.

For all α ≥ 0
$$\displaystyle{E_{\alpha,\alpha }(-x) = -\alpha \frac{\mathrm{d}} {\mathrm{d}x}E_{\alpha }(-x).}$$

$$\vartriangleleft$$ This follows from the standard properties of the integral depending on a parameter. $$\vartriangleright$$

### Lemma 4.26.

Let β > α > 0. Then the following identity holds:
$$\displaystyle{ E_{\alpha,\beta }(-x) = \frac{1} {\alpha \varGamma (\beta -\alpha )}\int \limits _{0}^{1}\left (1 - t^{1/\alpha }\right )^{\beta -\alpha -1}E_{\alpha,\alpha }(-\mathit{tx})\mathrm{d}t. }$$
(4.10.7)
$$\vartriangleleft$$ Let us take E α, α (−tx) in the form of a series and substitute it into the right-hand side of (4.10.7). By interchanging the order of integration and summation (which can be easily justified) we obtain that the right-hand side is equal to
$$\displaystyle{ \frac{1} {\alpha \varGamma (\beta -\alpha )}\sum \limits _{k=0}^{\infty }\frac{(-x)^{k}} {\varGamma (\alpha k+\alpha )} \int \limits _{0}^{1}t^{k}\left (1 - t^{1/\alpha }\right )^{\beta -\alpha -1}\mathrm{d}t.}$$
Calculating these integrals we arrive at the series representation for E α, β (−x). $$\vartriangleright$$
Observe that
$$\displaystyle\begin{array}{rcl} & E_{0,\beta }(-x) = \frac{1} {\alpha \varGamma (\beta )} \frac{1} {1+x},\;\;\;\beta > 0,& {}\\ & E_{0,\beta }(-x) = 0,\;\;\;\beta = 0. & {}\\ \end{array}$$
In both cases E 0, β (−x) is completely monotonic.

The complete monotonicity of E α, β (−x) then follows immediately from Pollard’s result [Poll48], see Sect.  of this book.

### 4.10.3 Relations to the Fractional Calculus

Here we present a few formulas related to the values of the fractional integrals and derivatives of the two-parametric Mittag-Leffler function (see, e.g., [HaMaSa11, pp. 15–16]). Let us start with the left-sided Riemann–Liouville integral. Suppose that $$\mathrm{Re}\,\alpha > 0,\;\mathrm{Re}\,\beta > 0,\;\mathrm{Re}\,\gamma > 0,\;a \in \mathbb{R}$$. Then by using the series representation and the left-sided Riemann–Liouville integral of the power function we get
$$\displaystyle{ \left (I_{0+}^{\alpha }\,t^{\gamma -1}E_{\beta,\gamma }(\mathit{at}^{\beta })\right )(x) = x^{\alpha +\gamma -1}\left (E_{\beta,\alpha +\gamma }(\mathit{ax}^{\beta })\right ), }$$
(4.10.8)
and, in particular, if a ≠ 0, then (for β = α)
$$\displaystyle{ \left (I_{0+}^{\alpha }\,t^{\gamma -1}E_{\alpha,\gamma }(\mathit{at}^{\alpha })\right )(x) = \frac{x^{\gamma -1}} {a} \left (E_{\alpha,\gamma }(\mathit{ax}^{\alpha }) - \frac{1} {\varGamma (\gamma )}\right ). }$$
(4.10.9)
In the same manner one can obtain the formula
$$\displaystyle{ \left (I_{0+}^{\alpha }\,t^{\alpha -1}E_{\alpha,\beta }(\mathit{at}^{\alpha })\right )(x) = \frac{x^{\alpha -1}} {a} \left (E_{\alpha,\beta }(\mathit{ax}^{\alpha }) - \frac{1} {\varGamma (\beta )}\right ). }$$
(4.10.10)
Analogously, one can calculate the right-sided fractional Riemann–Liouville integral of the two-parametric Mittag-Leffler function in the case $$\mathrm{Re}\,\alpha > 0,\mathrm{Re}\,\beta > 0,a \in \mathbb{R},a\not =0$$
$$\displaystyle{ \left (I_{-}^{\alpha }\,t^{-\alpha -\gamma }E_{\beta,\gamma }(\mathit{at}^{-\beta })\right )(x) = x^{-\gamma }\left (E_{\beta,\alpha +\gamma }(\mathit{ax}^{-\beta })\right ). }$$
(4.10.11)
If we suppose additionally that Re (α +γ) > Re β, then the last formula can be rewritten as
$$\displaystyle{ \left (I_{-}^{\alpha }\,t^{-\alpha -\gamma }E_{\beta,\gamma }(\mathit{at}^{-\beta })\right )(x) = \frac{x^{\beta -\gamma }} {a} \left (E_{\beta,\alpha +\gamma -\beta }(\mathit{ax}^{-\beta }) - \frac{1} {\varGamma (\alpha +\gamma -\beta )}\right ), }$$
(4.10.12)
and, in particular,
$$\displaystyle{ \left (I_{-}^{\alpha }\,t^{-\alpha -\beta }E_{\alpha,\beta }(\mathit{at}^{-\alpha })\right )(x) = \frac{x^{\alpha -\beta }} {a} \left (E_{\alpha,\beta }(\mathit{ax}^{-\alpha }) - \frac{1} {\varGamma (\beta )}\right ). }$$
(4.10.13)
In the case of the fractional differentiation of the two-parametric Mittag-Leffler function we have
$$\displaystyle{ \left (D_{0+}^{\alpha }\,t^{\gamma -1}E_{\beta,\gamma }(\mathit{at}^{\beta })\right )(x) = x^{\gamma -\alpha -1}\left (E_{\beta,\gamma -\alpha }(\mathit{ax}^{\beta })\right ),\;\mathrm{Re}\,\alpha > 0,\;\mathrm{Re}\,\beta > 0,a \in \mathbb{R}. }$$
(4.10.14)
If we assume extra conditions on the parameters, namely Re γ > Re β, Re γ > Re (α +β), a ≠ 0, then the following relations hold:
$$\displaystyle{ \left (D_{0+}^{\alpha }\,t^{\gamma -1}E_{\beta,\gamma }(\mathit{at}^{\beta })\right )(x) = \frac{x^{\gamma -\alpha -\beta -1}} {a} \left (E_{\beta,\gamma -\alpha -\beta }(\mathit{ax}^{\beta }) - \frac{1} {\varGamma (\gamma -\alpha -\beta )}\right ). }$$
(4.10.15)
In particular (see [KilSai95b]), for Re α > 0,  Re β > Re α + 1, one can prove
$$\displaystyle{ \left (D_{0+}^{\alpha }\,t^{\beta -1}E_{\alpha,\beta }(\mathit{at}^{\alpha })\right )(x) = \frac{x^{\beta -\alpha -1}} {\varGamma (\beta -\alpha )} + \mathit{ax}^{\beta -1}\left (E_{\alpha,\beta }(\mathit{ax}^{\alpha })\right ). }$$
(4.10.16)
Finally, the right-sided (Liouville) fractional derivative of the two-parametric Mittag-Leffler function satisfies the relation (see, e.g., [KiSrTr06, p. 86])
$$\displaystyle{ \left (D_{-}^{\alpha }\,t^{\alpha -\beta }E_{\alpha,\beta }(\mathit{at}^{-\alpha })\right )(x) = \frac{x^{-\beta }} {\varGamma (\beta -\alpha )} + \mathit{ax}^{-\alpha -\beta }\left (E_{\alpha,\beta }(\mathit{ax}^{-\alpha })\right ), }$$
(4.10.17)
valid for all Re α > 0,  Re β > Re α + 1.

We also mention two extra integral relations for the two-parametric Mittag-Leffler function which are useful for applications.

### Lemma 4.27.

Let α > 0 and β > 0. Then the following formula is valid
$$\displaystyle{ \frac{1} {\varGamma (\alpha )}\int \limits _{0}^{x}\frac{t^{\beta -1}E_{ 2\alpha,\beta }(t^{2\alpha })} {(x - t)^{1-\alpha }} \mathrm{d}t = x^{\beta -1}\left [E_{\alpha,\beta }(x^{\alpha }) - E_{ 2\alpha,\beta }(x^{2\alpha })\right ]. }$$
(4.10.18)

### Corollary 4.28.

Formula(4.10.18)means
$$\displaystyle{ I_{0+}^{\alpha }\left (t^{\beta -1}E_{ 2\alpha,\beta }(t^{2\alpha })\right )(x) = x^{\beta -1}\left [E_{\alpha,\beta }(x^{\alpha }) - E_{ 2\alpha,\beta }(x^{2\alpha })\right ]. }$$
(4.10.19)

## 4.11 Historical and Bibliographical Notes

The two-parametric Mittag-Leffler function first appeared in the paper by Wiman 1905 [Wim05a], but he did not pay too much attention to it. Much later this function was rediscovered by Humbert and Agarval, who studied it in detail in 1953 [Aga53] (see also [Hum53, HumAga53]). A new function was obtained by replacing the additive constant 1 in the argument of the Gamma function in () by an arbitrary complex parameter β. Later, when we deal with Laplace transform pairs, the parameter β will be required to be positive like α.

Using the integral representations for E α, β (z) Dzherbashian [Dzh54a], [Dzh54b], [Dzh66, Ch. III, §2] proved formulas for the asymptotic representation of E α, β (z) at infinity, and in [Dzh66, Ch. III, §4] he gave applications of these to the construction of Fourier type integrals and to the proof of theorems on pointwise convergence of these integrals on functions defined and summable with exponential-power weight on a finite system of rays. Note that the developed technique is based on the representation of entire functions in the form of sums of integral transforms with kernels of the form E α, β (z).

By using asymptotic properties of the function E α, β (z), Dzherbashian (see[Dzh66, Ch. III, §2]) found its Mellin transform, established certain functional identities and proved the inversion formula for the following integral transform with the function E α, β (z) in the kernel
$$\displaystyle{ \int \limits _{0}^{\infty }E_{\alpha,\beta }(\mathrm{e}^{i\varphi }x^{\alpha }t^{\alpha })t^{\beta -1}f(t)\mathrm{d}t }$$
(4.11.1)
in the space $$L_{2}(\mathbb{R}_{+})$$.
In [Bon-et-al02] the properties of the integral transforms with Mittag-Leffler function in the kernel
$$\displaystyle{ \int \limits _{0}^{\infty }E_{\alpha,\,\beta }(-\mathit{xt})f(t)\mathrm{d}t\ \ (x > 0) }$$
(4.11.2)
are studied in weighted spaces of r-summable functions
$$\displaystyle{ \mathcal{L}_{\nu,r} = \left \{f:\| f\|_{\nu,r} \equiv \left (\int \limits _{0}^{\infty }\vert t^{\nu }f(t)\vert \,\frac{\mathrm{d}t} {t} \right )^{1/r},\;\;\;1 \leq r < \infty,\;\;\;\nu \in \mathbb{R}\right \}. }$$
(4.11.3)
The conditions for the boundedness of such an operator as a mapping from one space to another were found, the images of these spaces under such a mapping were described, and inversion formulas were established. These results are based on the representation of (4.11.2) as a special case of the general H-transform (see Sect. F.3).

In recent years mathematicians’ attention towards the Mittag-Leffler type functions has increased, both from the analytical and numerical point of view, overall because of their relation to the fractional calculus. In addition to the books and papers already quoted in the text, here we would like to draw the reader’s attention to some recent papers on the Mittag-Leffler type functions, e.g., Al Saqabi and Tuan [Al-STua96], Kilbas and Saigo [KilSai96], Gorenflo, Luchko and Rogosin [GoLuRo97] and Mainardi and Gorenflo [MaiGor00]. Since the fractional calculus has now received wide interest for its applications in different areas of physics and engineering, we expect that the Mittag-Leffler function will soon occupy its place as the Queen Function of Fractional Calculus.

The remarkable asymptotic properties of the Mittag-Leffler function have provoked an interest in the investigation of the distribution of the zeros of E α, β (z). Several articles have been devoted to this problem (see [Dzh84, DzhNer68, OstPer97, Poly21, Pop02, Psk05, Sed94, Sed00, Wim05b]). An extended survey of the results is presented in [PopSed11]. Also studied is the related question of the distribution of zeros of sections and tails of the Mittag-Leffler function (see [Ost01, Zhe02]) and of some associated special functions (see [GraCso06, Luc00]).

The obtained results have found an application in the study of certain problems in spectral theory (see, e.g. [Dzh70, Djr93, Nak03]), approximation theory (see, e.g. [Sed98]), and in treating inverse problems (see, e.g., [TikEid02]).

Except in the case when $$\alpha = 1,\beta = -m,m \in \{-1\} \cup \mathbb{Z}_{+}$$, the function E α, β (z) has an infinite set of zeros (see [Sed94]). In [Wim05b] it was shown that for α ≥ 2 all zeros of the classical Mittag-Leffler function E α, 1(z) are negative and simple (see also [Poly21], where the case $$\alpha = N \in \mathbb{N},N > 1$$, is considered). In [Dzh84] it was proved that same result is valid for E 2, β (z), 1 < β < 3. Note that all zeros of the function $$E_{2,3}(z) =\cosh \frac{\sqrt{z}-1} {z}$$ are twofold and negative, but the function E 2, β (z), β > 3, has no real zero.

Ostrovski and Pereselkova [OstPer97] formulated the problem to describe the set $$\mathcal{W}$$ of pairs (α, β) such that all zeros of E α, β (z) are negative and simple. The authors conjectured that
$$\displaystyle{\mathcal{W} =\{ (\alpha,\beta )\vert \alpha \geq 2,0 <\beta < 1 +\alpha \}.}$$
It was shown, in particular, that $$(\alpha,1),(\alpha,2) \in \mathcal{W}$$ for all real α ≥ 2, and $$\left \{(2^{m},\beta )\vert m \in \mathbb{N},0 <\beta < 1 + 2^{m}\right \} \subset \mathcal{W}$$.
The asymptotic behaviour of the zeros of the function E α, β (z) is the subject of several investigations. In [Sed94] asymptotic formulas for the zeros z n (α, β) of E α, β (z) were found for all α > 0 and $$\beta \in \mathbb{C}$$. For 0 < α < 2 this asymptotic representation as n → ± is more exact and has the form
$$\displaystyle\begin{array}{rcl} & \left (z_{n}(\alpha,\beta )\right )^{1/\alpha } = 2\pi \mathit{in} + a(\alpha,\beta )\left (\log \,\vert n\vert + \frac{\pi i} {2}\mathrm{sign}\,n\right )& {}\\ & +b(\alpha,\beta ) + O\left (n^{-\alpha } + \frac{1} {n}\log \,\vert n\vert \right ). & {}\\ \end{array}$$
The values of a(α, β), b(α, β) are given in [Sed94]. A way of evaluating the zeros compatible with this asymptotical formula is proposed in [Sed00].

Schneider [Sch96] has proved that the generalized Mittag-Leffler function E α, β (−x) is completely monotonic for positive values of parameters α, β if and only if 0 < α ≤ 1, β ≥ α. The proof was based on the use of the corresponding probability measures and the Hankel integration path.

An analytic proof presented in Sect. 4.1.5 is due to Miller and Samko [MilSam97]. Note that the main formula (4.10.7) used in this proof is a special case of a more general relation due to Dzherbashian [Dzh66, p. 120] which states that $$x^{\beta +\gamma -1}E_{\alpha,\beta +\gamma }(-x^{\alpha })$$ is the fractional integral of order γ of the function $$x^{\beta -1}E_{\alpha,\beta }(-x^{\alpha })$$. However, the above presented result is more simple and straightforward.

Later (see, [MilSam01]), the proof of the complete monotonicity of some other special functions was given by Miller and Samko.

As a challenging open problem related to the Special Functions of Fractional Calculus (such as the multi-index Mittag-Leffler functions), we mention the possibility of their numerical computation and graphical interpretation, plots and tables, and implementations in software packages such as Mathematica, Maple, Matlab, etc. As mentioned earlier, the Classical Special Functions are already implemented there. For their Fractional Calculus analogues, numerical algorithms and software packages have been developed only for the classical Mittag-Leffler function E α; β (z) and the Wright function ϕ(α, β; z)! Numerical results and plots for the Mittag-Leffler functions for basic values of indices can be found in Caputo–Mainardi [CapMai71b] (one of the first attempts!) and Gorenflo–Mainardi [GorMai97]. Among the very recent achievements, we mention the following results: Podlubny [Pod11] (a Matlab routine that calculates the Mittag-Leffler function with desired accuracy), Gorenflo et al. [GoLoLu02] and Diethelm et al. [Die-et-al05] (algorithms for the numerical evaluation of the Mittag-Leffler function and a package for computation with Mathematica), Hilfer–Seybold [HilSey06] (an algorithm for extensive numerical calculations for the Mittag-Leffler function in the whole complex plane, based on its integral representations and exponential asymptotics), Luchko [Luc08] (algorithms for computation of the Wright function with prescribed accuracy), etc.

The results concerning calculation of the Mittag-Leffler function presented in Sect. 4.7 are based on the paper [GoLoLu02]. In [GoLoLu02] a numerical scheme for computation of the Mittag-Leffler function is given in pseudocode using a specially developed algorithm based on the above formulated results (see also the MatLab routine by Podlubny [Pod06, Pod11], and numerical computations of the Mittag-Leffler function performed by Hilfer and Seybold [SeyHil05, HilSey06, SeyHil08]).

The increasing interest in Mittag-Leffler functions and their wide application has given rise to the need for effective strategies for their numerical computation (see [HilSey06, Pod11, SeyHil08]). Thus the analysis of efficient and accurate numerical methods for generalized Mittag-Leffler functions with two parameters
$$\displaystyle{e_{\alpha,\beta }(t;\lambda ) = t^{\beta -1}E_{\alpha,\beta }(-\lambda t^{\alpha }),}$$
with scalar or matrix arguments, is actually a compelling subject. In [GarPop12] the problem of the numerical computation of generalized Mittag-Leffler functions with two parameters e α, β (t; λ) is studied with applications to fractional calculus. The inversion of their Laplace transform is an effective tool in this direction; however, the choice of the integration contour is crucial. Here parabolic contours are used and the quadrature rules for numerical integration are applied. An in-depth error analysis is carried out to select suitable contour parameters, depending on the parameters of the Mittag-Leffler function, in order to achieve any fixed accuracy. Numerical experiments to validate theoretical results are performed and some computational issues are discussed.

## 4.12 Exercises

1. 4.12.1.
Prove the following relations ([Ber-S05b]):
$$\displaystyle\begin{array}{rcl} E_{\alpha }(-x) = E_{2\alpha }(x^{2}) -\mathit{xE}_{ 2\alpha,1+\alpha }(x^{2}),\;\;\;x \in \mathbb{R},\;\;\;\mathrm{Re}\,\alpha > 0,& & {}\end{array}$$
(4.12.1a)
$$\displaystyle\begin{array}{rcl} E_{\alpha }(-\mathit{ix}) = E_{2\alpha }(-x^{2}) -\mathit{ix}E_{ 2\alpha,1+\alpha }(-x^{2}),\;\;\;x \in \mathbb{R},\;\;\;\mathrm{Re}\,\alpha > 0.& & {}\end{array}$$
(4.12.1b)

2. 4.12.2.
Prove the following recurrence relations ([SaKaKi03])
$$\displaystyle{ z^{m}E_{\alpha,\beta +m\alpha }(z)=E_{\alpha,\beta }(z) -\sum \limits _{n=0}^{m-1} \frac{z^{n}} {\varGamma (\beta +n\alpha )},\;\;\;\mathrm{Re}\,\alpha >0,\;\mathrm{Re}\,\beta >0,\;m \in \mathbb{N}. }$$
(4.12.2)

3. 4.12.3.
Let the family of functions H α be given by the formula ([Ber-S05b, p. 432])
$$\displaystyle{H_{\alpha }(k) = \frac{2} {\pi } \int \limits _{0}^{\infty }E_{ 2\alpha }(-t^{2}) \cdot \cos \, (\mathit{kt})\mathrm{d}t,\;\;\;k > 0,\;0 \leq \alpha \leq 1,}$$
where its power series in k has the form
$$\displaystyle{H_{\alpha }(k) = \frac{1} {\pi } \sum \limits _{n=0}^{\infty }b_{ n}(\alpha )k^{n},\;\;\;0 \leq \alpha < 1.}$$
Deduce the following asymptotic formula for E α (−x):
$$\displaystyle{E_{\alpha }(-x) = \frac{1} {\pi } \sum \limits _{n=0}^{\infty } \frac{b_{n}(\alpha )} {x^{n+1}},\;\;\;0 \leq \alpha < 1.}$$

Hint. Use the relation (4.12.1a).

4. 4.12.4.
Using the series representation of the two-parametric Mittag-Leffler function (4.1.1) prove the following recurrence relations
1. 4.12.4.1.
$$\displaystyle\begin{array}{rcl} & E_{1,1}(z) + E_{1,1}(-z) = 2\,E_{2,1}(z^{2})\,\Longleftrightarrow\,\mathrm{e}^{z} +\mathrm{ e}^{-z} = 2\,\cosh (z)\,, & {}\\ & E_{1,1}(z) - E_{1,1}(-z) = 2z\,E_{2,2}(z^{2})\,\Longleftrightarrow\,\mathrm{e}^{z} -\mathrm{ e}^{-z} = 2\,\sinh (z)\,,& {}\\ \end{array}$$
or in more general form:

2. 4.12.4.2.
$$\displaystyle\begin{array}{rcl} & E_{\alpha,\beta }(z) + E_{\alpha,\beta }(-z) = 2\,E_{2\alpha,\beta }(z^{2})\,, & {}\\ & E_{\alpha,\beta }(z) - E_{\alpha,\beta }(-z) = 2z\,E_{2\alpha,\alpha +\beta }(z^{2})\,;& {}\\ \end{array}$$

3. 4.12.4.3.
$$\displaystyle{E_{1,3}(z) = \frac{\mathrm{e}^{z} - 1 - z} {z^{2}} }$$
or in more general form (for any $$m \in \mathbb{N}$$):

4. 4.12.4.4.
$$\displaystyle{E_{1,m}(z) = \frac{1} {z^{m-1}}\left \{\mathrm{e}^{z} -\sum \limits _{ k=0}^{m-2}\frac{z^{k}} {k!} \right \}.}$$

5. 4.12.5.
With α > 0 show that
$$\displaystyle{ t^{\alpha -1}\,E_{\alpha,\alpha }(-t^{\alpha }) = -\frac{\mbox{ d}} {\mbox{ d}t}E_{\alpha }(-t^{\alpha })\,. }$$
(2par - 1par)

6. 4.12.6.
Prove the following differential relations for the two-parametric Mittag-Leffler function ([GupDeb07])
1. 4.12.6.1.
$$\displaystyle{3E_{1,4}(z) + 5zE_{1,4}^{{\prime}} + z^{2}E_{ 1,4}^{{\prime\prime}} = E_{ 1,2} - E_{1,3}.}$$

2. 4.12.6.2.
$$\displaystyle\begin{array}{rcl} & & n(n + 2)E_{\alpha,n+3}(z) + z\alpha [2n +\alpha +2]E_{\alpha,n+3}^{{\prime}} + z^{2}E_{\alpha,n+3}^{{\prime\prime}} {}\\ & =& E_{\alpha,n+1} - E_{\alpha,n+2}, {}\\ \end{array}$$
which hold for any α > 0 and any n = 1, 2, .

7. 4.12.7.
Prove the following Laplace transform pair for the auxiliary functions of Mittag-Leffler type defined below
$$\displaystyle{ e_{\alpha,\beta }(t;\lambda ):= t^{\beta -1}\,E_{\alpha,\beta }\left (-\lambda \,t^{\alpha }\right ) \div \frac{s^{\alpha -\beta }} {s^{\alpha }+\lambda } = \frac{s^{-\beta }} {1 +\lambda s^{-\alpha }}\,. }$$
(LT - E2)

8. 4.12.8.
Evaluate the following integrals ([HaMaSa11]):
1. 4.12.8.1.
$$\displaystyle{\int \limits _{0}^{x} \frac{E_{\alpha }(t^{\alpha })} {(x - t)^{1-\beta }}\mathrm{d}t}$$
for Re α > 0, Re β > 0.

2. 4.12.8.2.
$$\displaystyle{\int \limits _{0}^{\infty }\mathrm{e}^{-\mathit{st}}t^{m\alpha +\beta -1}E_{\alpha,\beta }^{(m)}(\pm \mathit{at}^{\alpha })\mathrm{d}t}$$
for Re s > 0, Re α > 0, Re β > 0, where
$$\displaystyle{E_{\alpha,\beta }^{(m)}(z) = \frac{\mathrm{d}^{m}} {\mathrm{d}z^{m}}E_{\alpha,\beta }(z).}$$

1. 4.12.8.1.
$$\displaystyle{\varGamma (\beta )x^{\beta }E_{\alpha,\beta +1}(x^{\alpha }).}$$

2. 4.12.8.2.
$$\displaystyle{ \frac{m!s^{\alpha -\beta }} {(s^{\alpha } \mp a)^{m+1}}.}$$

9. 4.12.9.
Prove the following formulas for half-integer values of parameters [Han-et-al09]:
1. 4.12.9.1.
$$\displaystyle{E_{1/2,1/2}(\pm x) = \frac{1} {\sqrt{x}} \pm x\mathrm{e}^{x^{2} }[1 \pm \mathrm{erf}(x)].}$$

2. 4.12.9.2.
$$\displaystyle{E_{1/2,1}(\pm x) =\mathrm{ e}^{x^{2} }[1 \pm \mathrm{erf}(x)].}$$

3. 4.12.9.3.
$$\displaystyle{E_{1,1/2}(+x) = \frac{1} {\sqrt{x}} + \sqrt{x}\mathrm{e}^{+x}\mathrm{erf}(\sqrt{x}).}$$

4. 4.12.9.4.
$$\displaystyle{E_{1,1/2}(-x) = \frac{1} {\sqrt{x}} + i\sqrt{x}\mathrm{e}^{-x}\mathrm{erf}(i\sqrt{x}).}$$

5. 4.12.9.5.
$$\displaystyle{E_{1,3/2}(+x) =\mathrm{ e}^{+x}\frac{\mathrm{erf}(\sqrt{x})} {\sqrt{x}}.}$$

6. 4.12.9.6.
$$\displaystyle{E_{1,3/2}(-x) = -i\mathrm{e}^{-x}\frac{\mathrm{erf}(i\sqrt{x})} {\sqrt{x}}.}$$

10. 4.12.10.
Prove the following formulas for negative integer values of parameters [Han-et-al09]:
1. 4.12.10.1.
$$\displaystyle{E_{-1,2}\left (\pm \frac{1} {x}\right ) = 1 \pm \frac{1 -\mathrm{ e}^{\pm x}} {x}.}$$

2. 4.12.10.2.
$$\displaystyle{E_{-2,1}\left (+ \frac{1} {x^{2}}\right ) = 1 -\cosh x.}$$

3. 4.12.10.3.
$$\displaystyle{E_{-2,1}\left (-\frac{1} {x^{2}}\right ) = 1 -\cos x.}$$

4. 4.12.10.4.
$$\displaystyle{E_{-2,2}\left (+ \frac{1} {x^{2}}\right ) = 1 -\frac{\sinh x} {x}.}$$

5. 4.12.10.5.
$$\displaystyle{E_{-2,2}\left (-\frac{1} {x^{2}}\right ) = 1 -\frac{\sin x} {x}.}$$

11. 4.12.11.
Prove the following formulas for negative semi-integer values of parameters [Han-et-al09]:
1. 4.12.11.1.
$$\displaystyle{E_{-1/2,1/2}\left (\pm \frac{1} {x}\right ) = \mp x\mathrm{e}^{x^{2} }[1 \pm \mathrm{erf}(x)].}$$

2. 4.12.11.2.
$$\displaystyle{E_{-1/2,1}\left (\pm \frac{1} {x}\right ) = 1 -\mathrm{ e}^{x^{2} }[1 \pm \mathrm{erf}(x)].}$$

3. 4.12.11.3.
$$\displaystyle{E_{-1,1/2}\left (+\frac{1} {x}\right ) = \sqrt{x}\mathrm{e}^{+x}\mathrm{erf}(\sqrt{x}).}$$

4. 4.12.11.4.
$$\displaystyle{E_{-1,1/2}\left (-\frac{1} {x}\right ) = -i\sqrt{x}\mathrm{e}^{-x}\mathrm{erf}(i\sqrt{x}).}$$

5. 4.12.11.5.
$$\displaystyle{E_{-1,3/2}\left (+\frac{1} {x}\right ) = \frac{2} {\sqrt{x}} -\mathrm{ e}^{+x}\frac{\mathrm{erf}(\sqrt{x})} {\sqrt{x}}.}$$

6. 4.12.11.6.
$$\displaystyle{E_{-1,3/2}\left (-\frac{1} {x}\right ) = \frac{2} {\sqrt{x}} + i\mathrm{e}^{-x}\frac{\mathrm{erf}(i\sqrt{x})} {\sqrt{x}}.}$$

12. 4.12.12.
Prove the following formula for the Laplace transform of the derivatives of the Mittag-Leffler function ([KiSrTr06, p. 50]):
$$\displaystyle{\left (\mathcal{L}\,t^{\alpha n+\beta -1}\left (\frac{\partial } {\partial \lambda }\right )^{n}E_{\alpha,\beta }(\lambda t^{\alpha })\right )(s) = \frac{n!s^{\alpha -\beta }} {\left (s^{\alpha }-\lambda \right )^{n+1}}\;\;\;(\vert \lambda s^{-\alpha }\vert < 1).}$$

13. 4.12.12.
Prove the following relations for the Mittag-Leffler functions with positive integer values of parameters (Capelas relations) ([Cap13]).
$$\displaystyle\begin{array}{rcl} \sum \limits _{k=1}^{m}z^{k-1}E_{ m,k}(z^{m}) =\mathrm{ e}^{z},\;\;\;m \in \mathbb{N},& & {}\end{array}$$
(4.12.12a)
$$\displaystyle\begin{array}{rcl} E_{1,m}(z) = \frac{1} {z^{m-1}}\left (\mathrm{e}^{z} -\sum \limits _{ k=0}^{m-2}\frac{z^{k}} {k!} \right ),\;\;\;m \in \mathbb{N}.& & {}\end{array}$$
(4.12.12b)

## Footnotes

1. 1.

The meaning of the weak limit $$\lim _{r\rightarrow \infty }^{\!\!\!{\ast}}$$ is the same as in the definition of entire functions of completely regular growth, see (4.5.1).

## References

1. [Abe23]
Abel, N.H.: Oplösning af et Par Opgaver ved Hjelp af bestemie Integraler. Magazin for Naturvidenskaberne Aargang 1, Bind 2, 11–27 (1823), in Norwegian. French translation “Solution de quelques problèmes à l’aide d’intégrales définies”. In: Sylov, L., Lie, S. (eds.) Oeuvres Complètes de Niels Henrik Abel (Deuxième Edition), I, Christiania, 11–27 (1881). Reprinted by Éditions Jacques Gabay, Sceaux (1992)Google Scholar
2. [Abe26]
Abel, N.H.: Aufloesung einer mechanischen Aufgabe. Journal für die reine und angewandte Mathematik (Crelle), 1, 153–157 (1826, in German). French translation “Résolution d’un problème de mécanique” In: Sylov, L., Lie, S. (eds.) Oeuvres Complètes de Niels Henrik Abel (Deuxième Edition), I, Christiania (1881), pp. 97–101. Reprinted by Éditions Jacques Gabay, Sceaux (1992). English translation “Solution of a mechanical problem” with comments by J.D. Tamarkin In: Smith, D.E. (ed.) A Source Book in Mathematics, pp. 656–662. Dover, New York (1959)Google Scholar
3. [Abe26a]
Abel, N.H.: Untersuchungen über die Reihe: $$1 + \frac{m} {1} x + \frac{m\cdot (m-1)} {1\cdot 2} x^{2} + \frac{m\cdot (m-1)\cdot (m-2)} {1\cdot 2\cdot 3} x^{3} + \cdot \cdot \cdot \cdot \cdot \cdot$$ u. s. w. J. Reine Angew. Math. 1, 311–339 (1826); translation into English in: Researches on the series $$1 + \frac{m} {1} \,x + \frac{m(m-1)} {1.2} \ x^{2} + \frac{m(m-1)(m-2)} {1.2.3} \ x^{3} + \cdots \,.$$ Tokio Math. Ges. IV, 52–86 (1891)Google Scholar
4. [AblFok97]
Ablowitz, M.J., Fokas, A.S.: Complex Variables. Cambridge University Press, Cambridge (1997)
5. [AbrSte72]
Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10th printing. National Bureau of Standards, Washington, DC (1972)Google Scholar
Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)Google Scholar
7. [Aga53]
Agarwal, R.P.: A propos d’une note de M. Pierre Humbert. C. R. Acad. Sci. Paris 236, 2031–2032 (1953)
8. [Ale82]
Aleroev, T.S.: The Sturm–Liouville problem for a second-order differential equation with fractional derivatives in the lower terms. Differ. Uravn. 18(2), 341–342 (1982) (Russian)
9. [Ale84]
Aleroev, T.S.: Special analysis of a class of nonselfadjoint operators. Differ. Uravn. 20(1), 171–172 (1984) (Russian)
10. [Al-B65]
Al-Bassam, M.A.: Some existence theorems on differential equation of generalized order. J. Reine Angew. Math. 218, 70–78 (1965)
11. [Al-B82]
Al-Bassam, M.A.: On fractional calculus and its applications to the theory of ordinary differential equations of generalized order. In: Singh, S.P., Burry, J.H. (eds.) Nonlinear Analysis and Applications (St. Johns, Nfld., 1981). Lecture Notes in Pure and Applied Mathematics, vol. 80, pp. 305–331. Marcel Dekker, New York (1982)Google Scholar
12. [Al-B86]
Al-Bassam, M.A.: On fractional analysis and its applications. In: Manocha, H.L. (ed.) Modern Analysis and Its Applications (New Delhi, 1983), pp. 269–307. Prentice-Hall of India, New Delhi (1986)Google Scholar
13. [Al-B87]
Al-Bassam, M.A.: On generalized power series and generalized operational calculus and its applications. In: Rassias, Th. M. (ed.) Nonlinear Analysis, pp. 51–88. World Scientific, Singapore (1987)Google Scholar
14. [Al-BLuc95]
Al-Bassam M.-A., Luchko Y.F.: On generalized fractional calculus and its application to the solution of integro-differential equations. J. Fract. Calc. 7, 69–88 (1995)
15. [AlKiKa02]
Ali, I., Kiryakova, V., Kalla, S.L.: Solutions of fractional multi-order integral and differential equations using a Poisson-type transform. J. Math. Anal. Appl. 269, 172–199 (2002)
16. [Al-MKiVu02]
Al-Musallam, F., Kiryakova, V., Vu Kim Tuan: A multi-index Borel-Dzrbashjan transform. Rocky Mt. J. Math. 32(2), 409–428 (2002)
17. [Al-S95]
Al Saqabi, B.N.: Solution of a class of differintegral equations by means of the Riemann–Liouville operator. J. Fract. Calc. 8, 95–102 (1995)
18. [Al-SKir98]
Al Saqabi, B.N., Kiryakova, V.S.: Explicit solutions of fractional integral and differential equations involving Erdelyi–Kober operators. Appl. Math. Comput. 95(1), 1–13 (1998)
19. [Al-STua96]
Al Saqabi, B.N., Tuan, V.K.: Solution of a fractional differintegral equation. Integral Transform. Spec. Funct. 4, 321–326 (1996)
20. [AnhLeo01]
Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104(5–6), 1349–1387 (2001)
21. [AnhLeo03]
Anh, V.V., Leonenko, N.N.: Harmonic analysis of random fractional diffusion-wave equations. Appl. Math. Comput. 141(1), 77—85 (2003)
22. [AnLeSa03]
Anh, V.V., Leonenko, N.N., Sakhno, L.M.: Higher-order spectral densities of fractional random fields. J. Stat. Phys. 111(3–4), 789–814 (2003)
23. [AnoBol94]
Anosov, D.V., Bolibruch, A.A.: The Riemann–Hilbert Problem. A publication from the Steklov Institute of Mathematics, Aspects Mathematics. Friedr. Vieweg & Sohn, Braunschweg (1994)Google Scholar
24. [AnKoVa93]
Antimirov, M.Ya., Kolyshkin, A.A., Vaillancourt, R.: Applied Integral Transforms. American Mathematical Society, Providence (1993)Google Scholar
25. [Art64]
Artin, E.: The Gamma Function, Holt, Rinehart and Winston, New York (1964). [first published by B.G. Teubner, Leipzig (1931)]
26. [Bab86]
Babenko, Yu.I.: Heat and Mass Transfer. Chimia, Leningrad (1986, in Russian)Google Scholar
27. [Bag79]
Bagley, R.L.: Applications of Generalized Derivatives to Viscoelasticity. Ph.D. dissertation, Air Force Institute of Technology (1979)Google Scholar
28. [Bag90]
Bagley, R.L.: On the fractional order initial value problem and its engineering applications. In: Nishimoto, K. (ed.) Fracional Calculus and Its Application, College of Engineering, Nihon University, 12–20 (1990)Google Scholar
29. [BagTor79]
Bagley, R.L., Torvik, P.J.: A generalized derivative model for an elastomer damper. Shock Vib. Bull. 49, 135–143 (1979)Google Scholar
30. [BagTor83a]
Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus, J. Rheol. 27, 201–210 (1983)
31. [BagTor83b]
Bagley, R.L., Torvik, P.J.: Fractional calculus – a different approach to the finite element analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)
32. [BaiKin96]
Baillie, R.T., King, M.L.: Fractional differencing and long memory processes. J. Econometrics 73, 1–3 (1996)
33. [BalV85]
Balakrishnan, V.: Anomalous diffusion in one dimension. Physica A 132, 569–580 (1985)
34. [Bal-et-al12]
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, vol. 3. World Scientific, Singapore (2012)Google Scholar
35. [Bark02]
Barkai, E.: CTRW pathways to the fractional diffusion equation. Chem. Phys. 284, 13–27 (2002)
36. [Barn02]
Barnes, E.W.: A memoir of integral functions. Lond. Philos. Trans. 199(A), 411–500; Lond. R. Soc. Proc. 69, 121–125 (1902)Google Scholar
37. [Barn06]
Barnes, E.W.: The asymptotic expansion of integral functions defined by Taylor’s series. Philos. Trans. R. Soc. Lond A 206, 249–297 (1906)
38. [Barn07b]
Barnes, E.W.: The asymptotic expansion of integral functions defined by generalized hypergeometric series. Proc. Lond. Math. Soc. Ser 2 5, 59–116 (1907)
39. [Barr54]
Barrett, J.H.: Differential equations of non-integer order. Can. J. Math. 6, 529–541 (1954)
40. [Bas88]
Basset, A.B.: A Treatise on Hydrodynamics, chap. 22, vol. 2. Deighton Bell, Cambridge (1888)Google Scholar
41. [BatErd54a]
Bateman, H., Erdelyi, A. with participation of Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)Google Scholar
42. [BatErd54b]
Bateman, H., Erdelyi, A. with participation of Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. 2. McGraw-Hill, New York (1954)Google Scholar
43. [BegOrs09]
Beghin, L., Orsingher, E.: Iterated elastic Brownian motions and fractional diffusion equations. Stoch. Process. Appl. 119, 1975–2003 (2009)
44. [Ber-S05a]
Berberan-Santos, M.N.: Analytic inversion of the Laplace transform without contour integration: application to luminescence decay laws and other relaxation functions. J. Math. Chem. 38, 165–173 (2005)
45. [Ber-S05b]
Berberan-Santos, M.N.: Properties of the Mittag-Leffler relaxation function. J. Math. Chem. 38, 629–635 (2005)
46. [Ber-S05c]
Berberan-Santos, M.N.: Properties of the Mittag-Leffler relaxation function. J. Math. Chem. 38(4), 629–635 (2005)
47. [BeyKem95]
Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. (ZAMM) 75(8), 623–635 (1995)Google Scholar
48. [Bie31]
Bieberbach, L.: Lehrbuch der Funktionentheorie. Bd. II: Moderne Funktionentheorie. 2. Aufl. (German). B.G. Teubner, Leipzig (1931)Google Scholar
49. [BiGoTe67]
Bingham, N.H., Goldie, C.M., Teugels, J.L: Regular Variation. Cambridge University Press, Cambridge (1967)Google Scholar
50. [Bla97]
Blank, L.: Numerical treatment of differential equations of fractional order. Non-linear World. 4(4), 473–491 (1997)
51. [BleHan86]
Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover, New York (1986)Google Scholar
52. [Boa83]
Boas, M.: Mathematical Methods in the Physical Sciences. Wiley, New York (1983)
53. [Boa54]
Boas, R.P.: Entire Functions. Academic, New York (1954)
54. [Boc49]
Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. U S A 35, 368–370 (1949)
55. [Boe62]
Boersma, J.: On a function which is a special case of Meijer’s G-function. Comput. Math. 15, 34–63 (1962)
56. [Bol90]
Bolibrukh, A.A.: Riemann–Hilbert problem. Uspekhi mat. nauk. 45(2) (272), 3–47 (1990) (Russian)Google Scholar
57. [Bon-et-al02]
Bonilla B., Rivero M., Rodriguez-Germa L., Trujillo J.J., Kilbas A.A., Klimets N.G.: Mittag-Leffler integral transform on $$\mathcal{L}_{\nu,r}$$-spaces. Rev. Acad. Canar. Cienc. 14(1–2), 65–77 (2002)
58. [Bor01]
Borel, E.: Lecons sur la series divergentes. Gauthier-Villars, Paris (1901)Google Scholar
59. [Bra62]
Braaksma, B.L.J.: Asymptotic expansions and analytical continuations for a class of Barnes integrals. Compos. Math. 15, 239–341 (1962–1964)Google Scholar
60. [BraTon92]
Brankov, J.G., Tonchev, N.S.: Finite-size scaling for systems with long-range interactions. Physica A 189, 583–610 (1992)
61. [BrHaJe48]
Brockmeyer, E., Halstrøm, H.L., Jensen, A.: The Life and Works of A.K. Erlang. Transactions of the Danish Academy of Technical Sciences, vol. 2. The Copenhagen Telephone Company, Copenhagen (1948)Google Scholar
62. [Bre65]
63. [Bro09]
Bromwich, T.J.: An asymptotic formula for generalized hypergeometric series. Proc. Lond. Math. Soc. 72(2), 101–106 (1909)
64. [Bro26]
Bromwich, T.J.I.: An introduction to the theory of infinite series. AMS Chelsea Publishing, Providence, RI (1926)
65. [BucLuc98]
Buckwar, E., Luchko, Yu.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)
66. [Buh25a]
Buhl, A.: Sommabilité et fonction E α(x). Enseignment. 24, 69–76 (1925)
67. [Buh25b]
Buhl, A.: Séries Analytiques. Sommabilité. Mémorial des Sciences Mathématiques. Acad. Sci. Paris, Fasc., vol. VII. Gauthier-Villars, Paris (1925)Google Scholar
68. [Bus72]
Buschman, R.G.: Contiguous relations and related formulas for the H-function of Fox. Jñānābha Sect. A 2, 39–47 (1972)
69. [ButWes00]
Butzer, P., Westphal, U.: Introduction to fractional calculus. In: Hilfer, R. (ed.) Fractional Calculus, Applications in Physics, pp. 1–85. World Scientific, Singapore (2000)
70. [CaUcWo10]
Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A.: Parameter estimation for fractional poisson processes. J. Stat. Plan. Inference 140, 3106–3120 (2010)
71. [Cam90]
Campos, L.M.: On the solution of some simple fractional differential equations. Int. J. Math. Math. Sci. 13 (3), 481–496 (1990)
72. [Cap13]
Capelas de Oliveira, E. Capelas’s relations. Personal communication (2013)Google Scholar
73. [CapMai11]
Capelas de Oliveira, E., Mainardi, F., Vaz, J. Jr.: Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J.-Special Topics 193, 161–171 (2011). [Revised Version as E-print http://arxiv.org/abs/1106.1761v2]
74. [Cap-et-al10]
Caponetto, R., Dongola, G., Fortuna, L., and Petráš, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)Google Scholar
75. [Cap66]
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Annali di Geofisica 19, 383–393 (1966)Google Scholar
76. [Cap67]
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent: part II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)
77. [Cap69]
Caputo, M.: Elasticità e Dissipazione. Zanichelli, Bologna (1969)Google Scholar
78. [Cap74]
Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56(3), 897–904 (1974)
79. [Cap79]
Caputo, M.: Which is the correct stress strain relation for the anelasticity of the earth’s interior? Geophys. J. R. Astron. Soc. 58, 432–435 (1979)Google Scholar
80. [Cap85]
Caputo, M.: Generalized rheology and geophysical consequences. Tectonophysics 116, 163–172 (1985)
81. [Cap89]
Caputo, M.: The rheology of an anelastic medium studied by means of the observation of the splitting of its eigenfrequencies. J. Acoust. Soc. Am. 86(5), 1984–1989 (1989)
82. [Cap96]
Caputo, M.: Modern rheology and electric induction: multivalued index of refraction, splitting of eigenvalues and fatigues. Ann. Geofis. 39(5), 941–966 (1996)Google Scholar
83. [Cap00]
Caputo, M.: Models of flux in porous media with memory. Water Resourc. Res. 36(3), 693–705 (2000)
84. [Cap01]
Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)
85. [CapMai71a]
Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II). 1, 161–198 (1971)Google Scholar
86. [CapMai71b]
Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. (PAGEOPH) 91, 134–147 (1971). [Reprinted in Fract. Calc. Appl. Anal. 10(3), 309–324 (2007)]Google Scholar
87. [CarMai97]
Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. CISM Courses and Lecture Notes, vol. 378. Springer, Wien/New York (1997)Google Scholar
88. [Col33]
Cole, K.S.: Electrical conductance of biological systems, electrical excitation in nerves. In: Proceedings Symposium on Quantitative Biology, Cold Spring Harbor Laboratory, July 1933, vol. 1, pp. 107–116. Cold Spring Harbor, Laboratory Press, New York (1933)Google Scholar
89. [ColCol41]
Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)Google Scholar
90. [ColCol42]
Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics. II. Direct current characteristics. J. Chem. Phys. 10, 98–105 (1942)Google Scholar
91. [Cox67]
Cox, D.R.: Renewal Theory, 2nd edn. Methuen, London (1967)
92. [CraBro86]
Craig, J.D., Brown, J.C.: Inverse Problems in Astronomy. Adam Hilger Ltd, Bristol (1986)
93. [Dav36]
Davis, H.T.: The Theory of Linear Operators. The Principia Press, Bloomington (1936)Google Scholar
94. [Dav59]
Davis, P.J.: Leonard Euler’s integral: a historical profile of the Gamma function. Am. Math. Mon. 66, 849–869 (1959)
95. [Dav02]
Davies, B.J.: Integral Transforms and Their Applications, 3rd edn. Springer, Berlin/New York (2002)
96. [DebBha07]
Debnath, L., Bhatta, D.: Integral Transforms and Their Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
97. [Del94]
Delbosco, D.: Fractional calculus and function spaces. J. Fract. Calc. 6, 45–53 (1994)
98. [Die10]
Diethelm, K.: The Analysis of Differential Equations of Fractional Order: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin/Heidelberg (2010)Google Scholar
99. [Die-et-al05]
Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)
100. [DitPru65]
Ditkin, V.A., Prudnikov, A.P.: Integral Transforms and Operational Calculus. Pergamon Press, Oxford (1965)
101. [Doe74]
Doetsch, G.: Introduction to the Theory and Applications of the Laplace Transformation. Springer, New York (1974)
102. [Dzh54a]
Dzherbashian [ = Djrbashian], M.M.: On integral representation of functions continuous on given rays (generalization of the Fourier integrals). Izvestija Akad. Nauk SSSR Ser. Mat. 18, 427–448 (1954, in Russian)Google Scholar
103. [Dzh54b]
Dzherbashian [ = Djrbashian], M.M.: On the asymptotic expansion of a function of Mittag-Leffler type, Akad. Nauk Armjan. SSR Doklady. 19, 65–72 (1954, in Russian)Google Scholar
104. [Dzh54c]
Dzherbashian [ = Djrbashian], M.M.: On Abelian summation of the eneralized integral transform. Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki. 7(6), 1–26 (1954, in Russian)Google Scholar
105. [Dzh60]
Dzherbashian [ = Djrbashian], M.M.: On integral transforms generated by the generalized Mittag-Leffler function. Izv. Akad. Nauk Armjan. SSR 13(3), 21–63 (1960, in Russian)Google Scholar
106. [Dzh66]
Dzherbashian [ = Djrbashian], M.M.: Integral Transforms and Representation of Functions in the Complex Domain. Nauka, Moscow (1966, in Russian)Google Scholar
107. [Dzh70]
Dzherbashian [ = Djrbashian], M.M.: A boundary value problem for a Sturm–Liouville type differential operator of fractional order. Izv. Akad. Nauk Armyan. SSR, Ser. Mat. 5(2), 71–96 (1970, in Russian)Google Scholar
108. [Dzh84]
Dzherbashian [ = Djrbashian], M.M.: Interpolation and spectral expansions associated with differential operators of fractional order. Sov. J. Contemp. Math. Anal. Arm. Acad. Sci. 19(2), 116 (1984) (English. Russian original); translation from Izv. Akad. Nauk Arm. SSR, Mat. 19(2), 81–181 (1984)Google Scholar
109. [Djr93]
Djrbashian [ = Dzherbashian], M.M.: Harmonic Analysis and Boundary Value Problems in the Complex Domain. Birkhäuser Verlag, Basel (1993)Google Scholar
110. [DzhNer68]
Dzherbashian [ = Djrbashian], M.M., Nersesian, A.B.: Fractional derivatives and the Cauchy problem for differential equations of fractional order. Izv. Akad. Nauk Arm. SSR, Mat. 3(1), 3–29 (1968, in Russian)Google Scholar
111. [EmKlMi01]
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extreme Events for Insurance and Finance. Springer, Berlin (2001)Google Scholar
112. [Bat-1]
Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)Google Scholar
113. [Bat-2]
Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. McGraw Hill, New York (1954)Google Scholar
114. [Bat-3]
Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 3. McGraw-Hill, New York (1955)
115. [Evg69]
Evgrafov, M.A., et al.: Collection of Exercises on the Theory of Analytic Functions. Nauka, Moscow (1969, in Russian)Google Scholar
116. [Evg78]
Evgrafov, M.A.: Asymptotic Estimates and Entire Functions, 2nd edn. Nauka, Moscow (1978, in Russian)Google Scholar
117. [Fel49]
Feller, W.: Fluctuation theory of recurrent events. Trans. Am. Math. Soc. 67, 98–119 (1949)
118. [Fel52]
Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, pp. 73–81 (1952)Google Scholar
119. [Fel71]
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971)Google Scholar
120. [Fog94]
Fogedby, H.C.: Langevin equations for continuous time Lévy flights. Phys. Rev. E 50, 1657–1660 (1994)
121. [Fox28]
Fox, C.: The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. Ser. 2 27, 389–400 (1928)
122. [Fox61]
Fox, C.: The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395–429 (1961)
123. [FrDiLu02]
Freed, A., Diethelm, K., Luchko, Y.: Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus. First Annual Report, NASA/TM-2002-211914, Gleen Research Center, pp. I–XIV, 1–121 (2002)Google Scholar
124. [Fuj33]
Fujiwara, M.: On the integration and differentiation of an arbitrary order. Tohoku Math. J. 37, 110–121 (1933)Google Scholar
125. [GarPop12]
Garrappa, R., Popolizio, M.: Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39(1), 205–225 (2013)
126. [Gauss]
Gauss, C.F.: Werke, Bd. III. Analysis. (various texts, in Latin and German, orig. publ. between 1799–1851, or found in the “Nachlass”; annotated by E.J. Schering). Dieterichschen Universitäts-Druckerei W. Fr. Kaestner (1866)Google Scholar
127. [GelShi64]
Gel’fand, I.M., Shilov, G.E.: Generalized Functions, vol. 1. Academic, New York (1964) (English translation from the Russian, Nauka, Moscow, 1959)
128. [Gem36]
Gemant, A.: A method of analyzing experimental results obtained from elastiviscous bodies. Physics 7, 311–317 (1936)
129. [Gem38]
Gemant, A.: On fractional differentials. Philos. Mag. (Ser. 7) 25, 540–549 (1938)Google Scholar
130. [Gem42]
Gemant, A.: Frictional phenomena: VIII. J. Appl. Phys. 13, 210–221 (1942)
131. [Gem50]
Gemant, A.: Frictional Phenomena. Chemical Publ. Co, Brooklyn (1950)Google Scholar
132. [Ger48]
Gerasimov, A.N.: A generalization of linear laws of deformation and its application to internal friction problem. Akad. Nauk SSSR. Prikl. Mat. Mekh. 12, 251–260 (1948, in Russian)Google Scholar
133. [GloNon93]
Glöckle, W.G., Nonnenmacher, T.F.: Fox function representation of non-Debye relaxation processes. J. Stat. Phys. 71, 741–757 (1993)
134. [GneKol54]
Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independently Random Variables. Addison-Wesley, Cambridge (1954) (English translation from the Russian edition, G.I.T.T.L., Moscow, 1949)Google Scholar
135. [GneKov68]
Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory. Israel Program for Scientific Translations, Jerusalem (1968)Google Scholar
136. [GoLeOs91]
Gol’dberg, A.A., Levin, B.Ya., Ostrovskij, I.V.: Entire and meromorphic functions. Itogi Nauki Tekh. Ser. Sovrem. Probl. Math. Fundam. Napravleniya 85, 5–186 (1991, in Russian)Google Scholar
137. [GonRos73]
Gonsovski, V.L., Rossikhin, Yu.A.: Stress waves in a viscoelastic medium with a singular hereditary kernel. J. Appl. Mech. Tech. Phys. 14(4), 595–597 (1973)
138. [Gor96]
Gorenflo, R.: Abel Integral Equations with Special Emphasis on Applications. Lectures in Mathematical Sciences, vol. 13. The University of Tokyo, Graduate School of Mathematical Sciences, Tokyo (1996)Google Scholar
139. [Gor97]
Gorenflo, R.: Fractional calculus: some numerical methods. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 277–290. Springer, Wien (1997)
140. [Gor98]
Gorenflo, R.: The tomato salad problem in spherical stereology. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, Varna 1996, pp. 132–149. Science Culture Technology, Singapore (1998)Google Scholar
141. [Gor02]
Gorenflo, R.: The tomato salad problem in spherical stereology. In: Kabanikhin, S.L., Romanov, V.G. (eds.) Ill-Posed Problems and Inverse Problems, pp. 117–134. VSP, AH Zeist (2002)Google Scholar
142. [Gor10]
Gorenflo, R.: Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit. In: Pai, S.S., Sebastian, N., Nair, S.S., Joseph, D.P., Kumar, D. (eds.) Proceedings of the (Indian) National Workshop on Fractional Calculus and Statistical Distributions, 25–27 Nov 2009, Publ. No 41, pp. 1–22. CMS, Pala/Kerala (2010). E-print: http://arxiv.org/abs/1004.4413
143. [GorAbdR04]
Gorenflo, R., Abdel-Rehim, E.A.: From power laws to fractional diffusion: the direct way. Vietnam J. Math. 32 (SI), 65–75 (2004)Google Scholar
144. [GoKiRo98]
Gorenflo, R., Kilbas, A.A., Rogosin, S.V.: On generalized Mittag-Leffler type functions. Integral Transforms Spec. Funct. 7(3–4), 215–224 (1998)
145. [GoLoLu02]
Gorenflo, R., Loutchko, J., Luchko, Yu.: Computation of the Mittag-Leffler function E α, β(z) and its derivative. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002). Corrections in Fract. Calc. Appl. Anal. 6(1), 111–112 (2003)Google Scholar
146. [GoLuMa99]
Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999)
147. [GoLuMa00]
Gorenflo, R., Luchko, Yu., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1–2), 175–191 (2000)
148. [GoLuRo97]
Gorenflo, R., Luchko, Yu., Rogosin, S.V.: Mittag-Leffler type functions: notes on growth properties and distribution of zeros. Preprint No. A04-97, Freie Universität Berlin. Serie A. Mathematik (1997)Google Scholar
149. [GorMai96]
Gorenflo, R., Mainardi, F.: Fractional oscillations and Mittag-LefHer functions. In: (ed.) International Workshop on the Recent Advances in Applied Mathematics, RAAM’96, University Kuwait, D.M.C.S., Kuwait, pp. 193–208 (1996)Google Scholar
150. [GorMai97]
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)
151. [GorMai98]
Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)
152. [GorMai01]
Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. In: Elschner, J., Gohberg, I., Silbermann, B. (eds.) Problems in Mathematical Physics (Siegfried Prössdorf Memorial Volume), pp. 120–145. Birkhäuser, Boston (2001)
153. [GorMai08]
Gorenflo, R., Mainardi, F.: Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport, Foundations and Applications, pp. 93–127. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2008)
154. [GorMai09]
Gorenflo, R., Mainardi, F.: Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, 400–415 (2009)
155. [GorMai11]
Gorenflo, R., Mainardi, F.: Subordination pathways to fractional diffusion. Eur. Phys. J. Spec. Top. 193, 119–132 (2011)
156. [GorMai12a]
Gorenflo, R., Mainardi, F.: Parametric subordination in fractional diffusion processes. In: Klafter, J., Lim, S.C., Metzler, R. (eds.) Fractional Dynamics, pp. 229–263. World Scientific, Singapore (2012). Chapter 10, E-print: http://arxiv.org/abs/1210.8414
157. [GorMai12b]
Gorenflo, R., Mainardi, F.: Laplace-Laplace analysis of the fractional Poisson process. In: Rogosin, S. (ed.) Analytical Methods of Analysis and Differential Equations. AMADE 2011, pp. 43–58. Belarusan State University, Minsk (2012). Kilbas Memorial VolumeGoogle Scholar
158. [Gor-et-al01]
Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. In: Kohlmann, M., Tang, S. (eds.) Trends in Mathematics – Mathematical Finance, pp. 171–180. Birkhäuser, Basel (2001)
159. [GoMaSr98]
Gorenflo, R., Mainardi, F., Srivastava, H.M.: Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In: The Eighth International Colloquium on Differential Equations, 1997, Plovdiv, pp. 195–202. VSP Publising Company, Utrecht (1998)Google Scholar
160. [GoMaVi07]
Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous-time random walk and parametric suboredination in fractional diffusion. Chaos Solut. Fractals 34, 87–103 (2007)
161. [GorRut94]
Gorenflo, R., Rutman, R.: On ultraslow and intermediate processes. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, 1994, Sofia, pp. 171–183. Science Culture Technology, Singapore (1994)Google Scholar
162. [GorVes91]
Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)
163. [GorViv03]
Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83, 2411–2420 (2003)
164. [Gou83a]
Goursat, E.: Sur les fonctions hypergéométriques d’ordre supérieur. Comptes Rendus, Académie des Sciences, Paris 96, 185–188 (1883) [Séance du 15 Janvier 1883]Google Scholar
165. [Gou83b]
Goursat, E.: Mémoire sur les fonctions hypergéométriques d’ordre supérieur. Ann. Sci. École Norm. Sup. (Ser 2) 12, 261–286; 395–430 (1883)Google Scholar
166. [Gov94]
Govorov, N.V.: Riemann Boundary Value Problem with Infinite Index. Birkhäuser, Basel/Boston/Berlin (1994)
167. [GraRyz00]
Gradshteyn, I.S., Ryzhik, I.M. Jeffrey, A. (eds.): Table of Integrals, Series, and Products. Academic, New York (2000)
168. [GraCso06]
Craven, T., Csordas, G.: The Fox’s Wright functions and Laguerre multiplier sequences. J. Math. Anal. Appl. 314, 109–125 (2006)
169. [GrLoSt90]
Gripenberg, G., Londen, S.O., Staffans, O.J.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)
170. [Gro47]
Gross, B.: On creep and relaxation. J. Appl. Phys. 18, 212–221 (1947)
171. [Gru67]
Grünwald, A.K.: Über “begrenzte” Derivation und deren Anwendung. Z. Angew. Math. Phys. 12, 441–480 (1867)Google Scholar
172. [GunKuz58]
Günter, N.M., Kuz’min, R.O.: Collection of Exercises on Higher Mathematics, vol. 2. Phyzmatgiz, Moscow (1958, in Russian)Google Scholar
173. [GupDeb07]
Gupta, I.S., Debnath, L.: Some properties of the Mittag-Leffler functions. Integral Transforms Spec. Funct. 18(5), 329–336 (2007)
174. [Han-et-al09]
Hanneken, J.W., Achar, B.N.N., Puzio, R., Vaught, D.M.: Properties of the Mittag-Leffler function for negative α. Phys. Scr. T136, 014037/1–5 (2009)Google Scholar
175. [HanSer08]
Hanyga, A., Seredynska, M.: On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation. J. Stat. Phys. 131, 269–303 (2008)
176. [HanSer12]
Hanyga, A., Seredynska, M.: Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion. J. Magn. Reson. 220, 85–93 (2012)
177. [Har28a]
Hardy, G.H.: Gösta Mittag-Leffler, 1846–1927. Proc. R. Soc. Lond. (A) 119, V–VIII (1928)Google Scholar
178. [HaMaSa11]
Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628, 51 (2011). Hindawi Publishing CorporationGoogle Scholar
179. [Hea93]
Heaviside, O.: Operators in mathematical physics. Proc. R. Soc. Lond. Ser. A 52, 504–529 (1893)
180. [Hil84]
Hilfer, R.: Stochastische Modelle für die betriebliche Planung. GBI-Verlag, Münich (1984)Google Scholar
181. [Hil97]
Hilfer, R.: Fractional derivatives in static and dynamic scaling. In: Dubrulle, B., Graner, F., Sornette, D. (eds.) Scale Invariance and Beyond, pp. 53–62. Springer, Berlin/EDP Science, France (1998)Google Scholar
182. [Hil00]
Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
183. [HilAnt95]
Hilfer, H., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E 51, R848–R851 (1995)
184. [HiLuTo09]
Hilfer, R., Luchko, Yu., Tomovski, Ž.: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3), 299–318 (2009)
185. [HilSey06]
Hilfer, R., Seybold, H.J.: Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms Spec. Funct. 17(9), 637–652 (2006)
186. [HilTam30]
Hille, E., Tamarkin, J.D.: On the theory of linear integral equations. Ann. Math. 31, 479–528 (1930)
187. [Hum53]
Humbert, P.: Quelques résultats relatifs à la fonction de Mittag-Leffler. C. R. Acad. Sci. Paris 236, 1467–1468 (1953)
188. [HumAga53]
Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelquenes de ses généralisationes. Bull. Sci. Math. (Ser. II). 77, 180–185 (1953)Google Scholar
189. [HumDel53]
Humbert, P., Delerue, P.: Sur une extension à deux variables de la fonction de Mittag-Leffler. C. R. Acad. Sci. Paris 237, 1059–1060 (1953)
190. [Jam10]
James, L.F.: Lamperti-type laws. Ann. Appl. Probab. 20(4), 1303–1340 (2010)
191. [JayPil96]
Jayakamur, K., Pillai, R.N.: Characterization of Mittag-Leffler distribution. J. Appl. Stat. Sci. 4(1), 77–82 (1996)Google Scholar
192. [Khi37]
Khintchine, A.Ya.: Zur Theorie der unbeschränkt teilbaren Verteillungsgesetze. Mat. Sbornik [Rec. Mat. [Mat. Sbornik], New Series] (1) 2(44), 79–119 (1937)Google Scholar
193. [Khi60]
Khintchine, A.Ya.: Mathematical Methods in the Theory of Queueing. Charles Griffin, London (1960)Google Scholar
194. [KilKor05]
Kilbas, A.A., Koroleva, A.A.: Generalized Mittag-Leffler function and its extension. Tr. Inst. Mat. Minsk. 13(1), 23–32 (2005, in Russian)Google Scholar
195. [KilKor06a]
Kilbas, A.A., Koroleva, A.A.: Inversion of the integral transform with an extended generalized Mittag-Leffler function. Dokl. Math. 74(3), 805–808 (2006)
196. [KilKor06b]
Kilbas, A.A., Koroleva, A.A.: Integral transform with the extended generalized Mittag-Leffler function. Math. Model. Anal. 11(1), 161–174 (2006)
197. [KilKor06c]
Kilbas, A.A., Koroleva, A.A.: Extended generalized Mittag-Leffler functions as H-functions, generalized Wright functions and differentiation formulas. Vestn. Belruasian State Univ. Ser. 1(2), 53–60 (2006, in Russian)Google Scholar
198. [KiKoRo13]
Kilbas, A.A., Koroleva, A.A., Rogosin, S.V.: Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 16(2), 378–404 (2013)
199. [KilSai95a]
Kilbas, A.A., Saigo, M.: On solution of integral equations of Abel–Volterra type. Differ. Integral Equ. 8(5), 993–1011 (1995)
200. [KilSai95b]
Kilbas, A.A., Saigo, M.: Fractional integral and derivatives of Mittag-Leffler type function. Dokl. Akad. Nauk Belarusi 39(4), 22–26 (1995, in Russian)Google Scholar
201. [KilSai96]
Kilbas, A.A., Saigo, M.: On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations. Integral Transforms Spec. Funct. 4, 355–370 (1996)
202. [KilSai99]
Kilbas, A.A., Saigo, M.: On the H functions. J. Appl. Math. Stoch. Anal. 12, 191–204 (1999)
203. [KilSai00]
Kilbas, A.A., Saigo, M.: The solution of a class of linear differential equations via functions of the Mittag-Leffler type. Differ. Equ. 36(2), 193–202 (2000)
204. [KilSai04]
Kilbas, A.A., Saigo, M.: H-Transform. Theory and Applications. Chapman and Hall/CRC, Boca Raton/London/New York/Washington, DC (2004)Google Scholar
205. [KiSaSa02]
Kilbas, A.A., Saigo, M., Saxena, R.K.: Solution of Volterra integrodifferential equations with generalized Mittag-Leffler function in the kernel. J. Integral Equ. Appl. 14, 377–396 (2002)
206. [KiSaSa04]
Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004)
207. [Kil-et-al12]
Kilbas, A., Saxena, R.K., Saigo, M., Trujillo, J.J.: Series representations and asymptotic expansions of extended generalized hypergeometric function. In: Rogosin, S.V. (ed.) Analytic Methods of Analysis and Differential Equations: AMADE-2009, pp. 31–59. Cambridge Scientific Publishers, Cottenham (2012)Google Scholar
208. [KiSrTr06]
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)Google Scholar
209. [KilTru01]
Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems – I. Appl. Anal. 78(1–2), 153–192 (2001)
210. [KilTru02]
Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems – II. Appl. Anal. 81(2), 435–494 (2002)
211. [KilZhu08]
Kilbas, A.A., Zhukovskaya, N.V.: Solution of Euler-type non-homogeneous differential equations with three fractional derivatives. In: Kilbas, A.A., Rogosin, S.V. (eds.) Analytic Methods of Analysis and Differential Equations: AMADE-2006, pp. 111–137. Cambridge Scientific Publisher, Cottenham/Cambridge (2008)Google Scholar
212. [KilZhu09a]
Kilbas, A.A., Zhukovskaya, N.V.: Euler-type non-homogeneous differential equations with three Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(2), 205–234 (2009)
213. [KilZhu09b]
Kilbas, A.A., Zhukovskaya, N.V.: Solution in closed form linear inhomogeneous Euler type equations with fractional derivatives. Dokl. NAS Belarus 53(4), 30–36 (2009, in Russian)Google Scholar
214. [Kir94]
Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, Harlow (1994)Google Scholar
215. [Kir99]
Kiryakova, V.: Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 2(4), 445–462 (1999)
216. [Kir00]
Kiryakova, V.: Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 118, 241–259 (2000)
217. [Kir08]
Kiryakova, V.: Some special functions related to fractional calculus and fractional (non-integer) order control systems and equations. Facta Universitatis (Sci. J. Univ. Nis) Ser.: Autom. Control Robot. 7(1), 79–98 (2008)Google Scholar
218. [Kir10a]
Kiryakova, V.: The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Comput. Math. Appl. 59(5), 1128–1141 (2010)
219. [Kir10b]
Kiryakova, V.: The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 59(5), 1885–1895 (2010)
220. [KirAl-S97a]
Kiryakova, V., Al-Saqabi, B.N.: Solutions of Erdelyi–Kober fractional integral, differential and differintegral equations of second type. C. R. Acad. Bulg. Sci. 50(1), 27–30 (1997)
221. [KirAl-S97b]
Kiryakova, V., Al-Saqabi, B.N.: Transmutation method for solving Erdelyi–Kober fractional differintegral equations. J. Math. Anal. Appl. 211(1), 347–364 (1997)
222. [KirLuc10]
Kiryakova, V., Luchko, Yu.: The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis. In: AIP Conference Proceedings, AIP Publishing, Melville, NY, vol. 1301, pp. 597–613 (2010)
223. [KlMaMe84]
Klebanov, L.B., Maniya, G.M., Melamed, I.A.: Zolotarev’s problem and analogous infinitely divisible and stable distributions. Theory Probab. Appl. 29, 791–794 (1984)
224. [KleFri07]
Kleinhans, D., Friedrich, R.: Continuous-time random walks: simulations of continuous trajectories. Phys. Rev. E 76, 061102/1–6 (2007)Google Scholar
225. [Koc89]
Kochubei, A.N.: A Cauchy problem for evolution equations of fractional order. J. Differ. Equ. 25, 967–974 (1989). English transl. from Russian Differ. Uravn.Google Scholar
226. [Koc90]
Kochubei, A.N.: Fractional order diffusion. J. Differ. Equ. 26, 485–492 (1990). English transl. from Russian Differ. Uravn.Google Scholar
227. [Koc11]
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71, 583–600 (2011)
228. [Kon67]
Konhauser, J.D.E.: Biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 21, 303–314 (1967)
229. [Kra04]
Krantz, S.: Complex Analysis: The Geometric Viewpoint, 2nd edn. Mathematical Association of America Inc., Washington, DC (2004)
230. [Kra79]
Krätzel, E.: Integral transformations of Bessel type. In: Generalized Functions & Operational Calculus. (Proceedings of the Conference on Varna, 1975), Bulgarian Academy of Sciences, Sofia, pp. 148–165 (1979)Google Scholar
231. [Kum36]
Kummer, E.E.: Über die hypergeometrische Reihe $$1 + \tfrac{\alpha \cdot \beta } {1\cdot \gamma }\ x + \tfrac{\alpha (\alpha +1)\beta (\beta +1)} {1\cdot 2\cdot \gamma (\gamma +1)} x^{2} + \tfrac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)} {1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)} x^{3} + \mbox{ etc.}$$ J. für die reine und angewandte Mathematik 15, 39–83, 127–172 (1836, in German)Google Scholar
232. [Kum37]
Kummer, E.E.: De integralibus quibusdam definitis et seriebus infinitis. J. für die reine und angewandte Mathematik 17, 228–242 (1837, in Latin)Google Scholar
233. [Lai93]
Laine I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Basel (1993)
234. [Lam58]
Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Am. Math. Soc. 88, 380-387 (1958)
235. [Las03]
Laskin, N.: Fractional Poisson processes. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)
236. [Las09]
Laskin, N.: Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50, 113513/1–12 (2009)
237. [LavSha65]
Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Functions of Complex Variable. Nauka, Moscow (1965, in Russian)Google Scholar
238. [LeR00]
Le Roy, É.: Sur les séries divergentes et les fonctions définies par un développement de Taylor. Toulouse Ann. 2(2), 317–430 (1900)
239. [Let68a]
Letnikov, A.V.: Theory of differentiation with an arbitrary index. Math. Sb. 3, 1–66 (1868, in Russian)Google Scholar
240. [Let68b]
Letnikov, A.V.: On historical development of differentiation theory with an arbitrary index. Mat. Sb. 3, 85–112 (1868, in Russian)Google Scholar
241. [LetChe11]
Letnikov, A.V., Chernykh V.A.: The Foundation of Fractional Calculus, Moscow, Neftegaz (2011) (in Russian)Google Scholar
242. [Lev56]
Levin, B.Ya.: Distribution of Zeros of Entire Functions. AMS, Providence, 2nd printing (1980). [First published in Russian by Nauka, Moscow (1956)]Google Scholar
243. [Lin03]
Lindelöf, E.: Sur la détermination de la croissance des fonctions entières définies par un developpment de Taylor. Bull. des Sciences Mathématigues (Ser. II) 27, 213–226 (1903)Google Scholar
244. [Lio32a]
Liouville, J.: Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. l’École Roy. Polytéchn. 13(Sect. 21), 1–69 (1832)Google Scholar
245. [Lio32a]
Liouville, J.: Mémoire sur le calcul des différentielles à indices quelconques. J. l’École Roy. Polytéchn. 13(Sect. 21), 71–162 (1832)Google Scholar
246. [Lio37]
Liouville, J.: Mémoire sur l’intégration des équations différentielles à indices fractionnaires. J. l’École Roy. Polytéchn. 15(55), 55–84 (1837)Google Scholar
247. [Luc99]
Luchko, Yu.: Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2, 463–488 (1999)
248. [Luc00]
Luchko, Yu.: Asymptotics of zeros of the Wright function. J. Anal. Appl. (ZAA) 19, 583–596 (2000)Google Scholar
249. [Luc08]
Luchko, Yu.: Algorithms for evaluation of the Wright function for the real arguments’ values. Fract. Calc. Appl. Anal. 11, 57–75 (2008)
250. [LucGor98]
Luchko, Yu., Gorenflo, R.: Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1, 63–78 (1998)
251. [LucGor99]
Luchko, Yu., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24, 207–233 (1999)
252. [LucSri95]
Luchko, Yu., Srivastava, H.M.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29, 73–85 (1995)
253. [Luk1]
Luke, Y.L.: The Special Functions and Their Approximations, vol. 1. Academic, New York/London (1969)
254. [Mac-R38]
Mac Robert, T.M.: Proofs of some formulae for generalized hypergeometric function and certain related functions. Philos. Mag. 26, 82–93 (1938)
255. [Mag06]
Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Connecticut (2006)Google Scholar
256. [Mai96]
Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)
257. [Mai96a]
Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)
258. [Mai97]
Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien/New York (1997)
259. [Mai10]
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)
260. [MaiGor00]
Mainardi, F., Gorenflo, R.: Fractional calculus: special functions and applications. In: Cocolicchio, D., et al. (eds.) Advanced Special Functions and Applications. Proceedings of the Workshop, Melfi, Italy, May 9–12, 1999. Rome: Aracne Editrice. Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, vol. 1, 165–188 (2000)
261. [MaiGor07]
Mainardi, F., Gorenflo, R.: Time-fractional derivatives in relaxation processes: a tutorial survey. Fract. Calc. Appl. Anal. 10, 269–308 (2007)
262. [MaGoSc04a]
Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam. J. Math. 32(Spec. Iss.), 53–64 (2004)Google Scholar
263. [MaGoVi05]
Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Fract. Calc. Appl. Anal. 8, 7–38 (2005)
264. [MaGoVi07]
Mainardi, F., Gorenflo, R., Vivoli, A.: Beyond the Poisson renewal process: a tutorial survey. J. Comput. Appl. Math. 205, 725–735 (2007)
265. [MaLuPa01]
Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)
266. [MaiPag03]
Mainardi, F., Pagnini, G.: Salvatore Pincherle: the pioneer of the Mellin–Barnes integrals. J. Comput. Appl. Math. 153, 331–342 (2003)
267. [MaPaSa05]
Mainardi, F., Pagnini, G., Saxena, R.K.: Fox H-functions in fractional diffusion. J. Comput. Appl. Math. 178, 321–331 (2005)
268. [Mai-et-al00]
Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287, 468–481 (2000)
269. [MaiRog06]
Mainardi, F., Rogosin, S.: The origin of infinitely divisible distributions: from de Finetti’s problem to Lévy-Khintchine formula. Math. Methods Econ. Finance 1, 37–55 (2006)
270. [MalShi75]
Malakhovskaya, R.M., Shikhmanter, E.D.: Certain formulae for the realization of operators, and their applications to the solution of integro-differential equations. Trudy Tomsk. Gos. Univ. 220, 46–56 (1975)
271. [Mal03]
Malmquist, J.: Sur le calcul des integrales d’un système d’équations différentielles par la methodé de Cauchy-Lipschitz. Arkiv för Mat. Astr. och Fysik Bd. 1, 149–156 (1903)
272. [Mal05]
Malmquist, J.: Étude d’une fonction entière. Acta Math. 29, 203–215 (1905)
273. [Man25]
Mandelbroit, S.: Sulla generalizzazione del calcolo delle variazione. Atti Reale Accad. Naz. Lincei. Rend. Cl. sci. fiz. mat. s natur. (Ser. 6) 1, 151–156 (1925)Google Scholar
274. [Mara71]
Maravall, D.: Linear differential equations of non-integer order and fractional oscilations (Spanish). Rev. Ac. Ci. Madr. 65, 245–258 (1971)
275. [Marc27]
Marchaud, A.: Sur les dérivées et sur les différences des fonctions de vriables réelles. J. Math. Pures et Appl. 6(4), 337–425 (1927)
276. [Mari83]
Marichev, O.I.: Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables. Chichester, Ellis Horwood (1983)
277. [Mark66]
Markushevich, A.I.: A short course on the theory of analytic functions. Nauka, Moscow (1966, in Russian)Google Scholar
278. [MaMoWe03]
Masoliver, J., Montero, M., Weiss, G.H.: Continuous-time random-walk model for financial distributions. Phys. Rev. E 67, 021112/1–9 (2003)
279. [MatHau08]
Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)
280. [MatSax73]
Mathai, A.M., Saxena, R.K.: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lecture Notes in Mathematics, vol. 348. Springer, Berlin/Heidelberg (1973)Google Scholar
281. [MatSax78]
Mathai, A.M., Saxena, R.K.: The H-function with Applications in Statistics and Other Disciplines. Wiley Eastern Ltd, New Delhi (1978)Google Scholar
282. [MaSaHa10]
Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-function. Theory and applications. Springer, Dordrecht (2010)
283. [McB79]
McBride, A.C.: Fractional Calculus and Integral Transforms of Generalized Functions. Pitman, London (1979)
284. [McBRoa85]
McBride, A.C., Roach, G.F. (eds.) Fractional Calculus, Pitman Research Notes in Mathematics, vol. 132. Pitman, London (1985)Google Scholar
285. [Mee-et-al02]
Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Baeumer, B.: Stochastic solutions of space fractional diffusion equation. Phys. Rev. E 65, 041103-1/4 (2002)
286. [MeNaVe11]
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)
287. [MeeSch01]
Meerschaert, M.M., Scheffler, H.-P.: Limit Theorems for Sums of Independent Random Variables, Heavy Tails in Theory and Practice. Wiley, New York (2001)Google Scholar
288. [Mei36]
Meijer, C.S.: Über Whittakersche bzw. Besselsche Funktionen und deren Produkte. Nieuw Arch. Wiskd. 18, 10–39 (1936, in German)Google Scholar
289. [Mei46]
Meijer, C.S.: On the G-function. Proc. Nederl. Akad. Wetensch. 49, 227–236, 344–356, 457–469, 632–641, 765–772, 936–943, 1062–1072, 1165–1175 (1946)Google Scholar
290. [Mel95]
Mellin, Hj.: Über die fundamentale Wichtigkeit des Satzes yon Cauchy für die Theorien der Gamma- und der hypergeometrischen Functionen. Acta Soc. Scient. Fenn. Bd. 20, 115 S (1895)Google Scholar
291. [Mel02]
Mellin, Hj.: Eine Formel für den Logarithmus transzendenter Funktionen von endlichem Geschlecht. Helsingfors. Acta Soc. Fenn. 50 S. 4 (1902)Google Scholar
292. [Mel10]
Mellin, Hj.: Abriss einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen. Math. Ann. 68, 305–337 (1910)Google Scholar
293. [Mes67]
Meshkov, S.I.: Description of internal friction in the memory theory of elasticity using kernels with a weak singularity. J. Appl. Mech. Tech. Phys. 8(4), 100–102 (1967)
294. [Mes70]
Meshkov, S.I.: Integral representation of fractional exponential functions and their application to dynamic problems in linear viscoelasticity. J. Appl. Mech. Tech. Phys. 11(1), 100–107 (1970); translation from Zh. Prikl. Mekh. i Techn. Fiz. 11(1), 103–110 (1970)Google Scholar
295. [MePaSh66]
Meshkov, S.I., Pachevskaya, G.N., Shermergor, T.D.: Internal friction described with the aid of fractionally-exponential kernels. J. Appl. Mech. Tech. Phys. 7(3), 63–65 (1966)
296. [MesRos68]
Meshkov, S.I., Rossikhin, Yu.A.: Propagation of acoustic waves in a hereditary elastic medium. J. Appl. Mech. Tech. Phys. 9(5), 589–592 (1968)
297. [MetKla00]
Metzler, R., Klafter, J.: The random walk a guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
298. [MetKla04]
Metzler, R., Klafter, J.: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37, R161–R208 (2004)
299. [Mik59]
Mikusiński, J.: Operational Calculus. Pergamon Press, New York (1959)
300. [Mil75]
Miller, K.S.: The Weyl fractional calculus. In: Ross, B. (ed.) Fractional Calculus and Its Applications, pp. 80–89. Springer, Berlin (1975)
301. [MilRos93]
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
302. [MilSam97]
Miller, K.S., Samko, S.G.: A note on the complete monotonicity of the generalized Mittag-Leffler function. Real. Anal. Exch. 23, 753–755 (1997)
303. [MilSam01]
Miller, K.S., Samko, S.G.: Completely monotonic functions. Integral Transforms Spec. Funct. 12(4), 389–402 (2001)
304. [Mit84]
Mittag-Leffler, M.G.: Sur la representation analytique des fonctions monogène uniformes d’une variable independante. Acta Math. 4, 1–79 (1884)
305. [ML1]
Mittag-Leffler, M.G.: Sur l’intégrale de Laplace–Abel. C. R. Acad. Sci. Paris 135, 937–939 (1902)
306. [ML2]
Mittag-Leffler, M.G.: Une généralization de l’intégrale de Laplace–Abel. Comp. Rend. Acad. Sci. Paris 136, 537–539 (1903)
307. [ML3]
Mittag-Leffler, M.G.: Sur la nouvelle fonction E α(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)Google Scholar
308. [ML4]
Mittag-Leffler, M.G.: Sopra la funzione E α(x). Rend. R. Acc. Lincei, (Ser. 5) 13, 3–5 (1904)Google Scholar
309. [ML5-1]
Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène (première note). Acta Math. 23, 43–62 (1899)
310. [ML5-2]
Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène (seconde note). Acta Math. 24, 183–204 (1900)
311. [ML5-3]
Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène (troisème note). Acta Math. 24, 205–244 (1900)
312. [ML5-4]
Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène (quatrième note). Acta Math. 26, 353–392 (1902)
313. [ML5-5]
Mittag-Leffler, M.G.: Sur la representation analytique d’une branche uniforme d’une fonction monogène (cinquième note). Acta Math. 29, 101–181 (1905)
314. [ML5-6]
Mittag-Leffler, M.G.: Sur la representation analytique d’une branche uniforme d’une fonction monogène (sixième note). Acta Math. 42, 285–308 (1920)
315. [MonWei65]
Montroll, E.W., Weiss, G.H.: Random walks on lattices, II. J. Math. Phys. 6, 167–181 (1965)
316. [Nak74]
Nakhushev, A.M.: Inverse problems for degenerate equations, and Volterra integral equations of the third kind. Differentsial’nye Uravnenija. 10(1), 100–111 (1974, in Russian)Google Scholar
317. [Nak77]
Nakhushev, A.M.: The Sturm–Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms. Dokl. Akad. Nauk SSSR. 234(2), 308–311 (1977, in Russian)Google Scholar
318. [Nak03]
Nakhushev, A.M.: Fractional calculus and its applications. (Drobnoe ischislenie i ego primenenie.) Fizmatlit, Moskva (2003, in Russian)Google Scholar
319. [Nev25]
Nevanlinna, R.: Zur Theorie der Meromorphen Funktionen. Acta Math. 46, 1–99 (1925). (Springer, Netherlands)Google Scholar
320. [Nev36]
Nevanlinna, R.: Analytic functions. In: Die Grundlehren der mathematischen Wissenschaften, vol. 162. Springer, Berlin/New York (1970). [Reprinted of 1936 edition]Google Scholar
321. [New05]
Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)Google Scholar
322. [NewTr-10]
Baleanu, D., Güvenç, Z.B., Tenreiro Machado, J.A. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht/Heidelberg etc. (2010)Google Scholar
323. [Nis84]
Nishimoto, K.: Fractional Calculus: Integration and Differentiation of Arbitrary Order, vols. I–V. Descartes Press, Koriyama (1984, 1989, 1991, 1996)Google Scholar
324. [Nis90]
Nishimoto, K. (ed.) Fractional Calculus and Its Applications. Nihon University, Tokyo (1990)
325. [Nis91]
Nishimoto, K.: An Essence of Nishimoto’s Fractional Calculus. Descartes Press, Koriyama (1991)
326. [NiOwSr84]
Nishimoto, K., Owa, S., Srivastava, H.M.: Solutions to a new class of fractional differintegral equations. J. Coll. Eng. Nihon Univ. Ser. B 25, 75–78 (1984)
327. [NIST]
Olver (editor-in-chief), F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions, 951 + xv pp. and a CD. National Institute of Standards and Technology/Cambridge University Press, Gaithersburg/New York (2010)Google Scholar
328. [Nut21]
Nutting, P.G.: A new general law of deformation. J. Frankl. Inst. 191, 679–685 (1921)
329. [Nut43]
Nutting, P.G.: A general stress-strain-time formula. J. Frankl. Inst. 235, 513–524 (1943)
330. [Nut46]
Nutting, P.G.: Deformation in relation to time, pressure and temperature. J. Frankl. Inst. 242, 449–458 (1946)
331. [Obe74]
Oberhettinger, F.: Tables of Mellin Transforms. Springer, New York (1974)
332. [OldSpa74]
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)
333. [Oli39]
de Oliveira Castro, F.M.: Zur Theorie der dielektrischen Nachwirkung. Zeits. für Physik 114, 116–126 (1939)
334. [OrsPol09]
Orsingher, E., Polito, F.: Some results on time-varying fractional partial differential equations and birth-death processes. In: Proceedings of the XIII International EM Conference on Eventological Mathematics and Related Fields, Krasnoyarsk, pp. 23–27 (2009)Google Scholar
335. [Ost01]
Ostrovskii, I.V.: On zero distribution of sections and tails of power series. Isr. Math. Conf. Proc. 15, 297–310 (2001)
336. [OstPer97]
Ostrovski, I.V., Peresyolkova, I.N.: Nonasymptotic results on distribution of zeros of the function E ρ(z; μ). Anal. Math. 23, 283–296 (1997)
337. [Pan-K11]
Paneva-Konovska, J.: Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. Comptes Rendus de l’Academie Bulgare des Sciences 64(8), 1089–1098 (2011)
338. [Pan-K12]
Paneva-Konovska, J.: Three-multi-index Mittag-Leffler functions, series and convergence theorems. In: Proceedings of FDA’12, Nanjing (2012)Google Scholar
339. [ParKam01]
Paris, R.B., Kaminski, D.: Asymptotic and Mellin–Barnes Integrals. Cambridge University Press, Cambridge (2001)
340. [Pat66]
Pathak, R.S.: Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transformations. Proc. Natl. Acad. Sci. India A-36(1), 81–86 (1966)Google Scholar
341. [Pat67]
Pathak, R.S.: An inversion formula for a generalization of the Lommel and Maitland transformations. J. Sci. Banaras Hindu Univ. 17(1), 65–69 (1966–1967)Google Scholar
342. [Phr04]
Phragmén, E.: Sur une extension d’un théorème classique de la théorie des fonctions. Acta Math. 28, 351–368 (1904)Google Scholar
343. [PhrLin08]
Phragmén, E., Lindelöf, E.: Sur une extension d’un principle classique de l’analyse. Acta Math. 31, 381–406 (1908)
344. [Pil90]
Pillai, R.N.: On Mittag-Leffler functions and related distributions. Ann. Inst. Statist. Math. 42(1), 157–161 (1990)
345. [PilJay95]
Pillai, R.N., Jayakamur, K.: Discrete Mittag-Leffler distributions. Stat. Probab. Lett. 23(3), 271–274 (1995)
346. [Pin88]
Pincherle, S.: Sulle funzioni ipergeometriche generalizzate. Atti R. Accad. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 4(4), 694–700, 792–799 (1888)Google Scholar
347. [Pin25]
Pincherle, S.: Notices sur les travaux. Acta Math. 46, 341–362 (1925)
348. [PitSew38]
Pitcher, E., Sewell, W.E.: Existence theorem for solutions of differential equations of non-integral order. Bull. Am. Math. Soc. 44(2), 100–107 (1938) (A correction in No. 12, p. 888)Google Scholar
349. [Poc70]
Pochhammer, L.: Über hypergeometrische Functionen n-ter Ordnung. Journal für die reine und angewandte Mathematik (Crelle) 71, 316–352 (1870)
350. [Pod99]
Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)
351. [Pod06]
Podlubny, I.: Mittag-Leffler function. WEB Site of MATLAB Central File exchange (2006). Available at http://www.mathworks.com/matlabcentral/fileexchange
352. [Pod11]
Podlubny, I.: Fitting data using the Mittag-Leffler function. Matlab Central File Exchange (11 Jul 2011 (Updated 02 Apr 2012)). Available at http://www.mathworks.com/matlabcentral/fileexchange
353. [PoKaSc11]
Politi, M., Kaizoji, T., Scalas, E.: Full characterization of the fractional Poisson process. Eur. Phys. Lett. (EPL) 96, 20004/1-6 (2011)Google Scholar
354. [Poll48]
Pollard, H.: The completely monotonic character of the Mittag-Leffler function e α(−x). Bull. Am. Math. Soc. 54, 1115–1116 (1948)
355. [Poly21]
Polya, G.: Bemerkung über die Mittag-Lefflerschen Funktionen E 1∕α(x). Tôhoku Math. J. 19, 241–248 (1921)
356. [PolMan08]
Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations, 2nd edn. CRC, Boca Raton (2008)
357. [Pop02]
Popov, A.Yu.: The spectral values of a boundary value problem and the zeros of Mittag-Leffler functions. Diff. Equ. 38(5), 642–653 (2002); translation from Differ. Uravn. 38(5), 611–621 (2002) (English. Russian original)Google Scholar
358. [Pop06]
Popov, A.Yu.: On a zeroes of Mittag-Leffler functions with parameter $$\rho < 1/2$$. Anal. Math. 32(3), 207–246 (2006, in Russian)Google Scholar
359. [PopSed03]
Popov, A.Yu., Sedletskii, A.M.: Zeros distribution of Mittag-Leffler functions. Dokl. Math. 67(3), 336–339 (2003); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk. 390(2), 165–168 (2003)Google Scholar
360. [PopSed11]
Popov, A.Yu., Sedletskii, A.M.: Zeros distribution of Mittag-Leffler functions. Contemp. Math. Fundam. Directions. 40, 3–171 (2011,in Russian); translation in J. Math. Sci. 190, 209–409 (2013)Google Scholar
361. [Pos19]
Post, E.L.: Discussion of the solution of $$(\mathrm{d}/\mathrm{d}x)^{1/2}y = y/x$$ (problem 433). Am. Math. Mon. 26, 37–39 (1919)
362. [Pra71]
Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
363. [PrBrMa-V2]
Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integral and Series. Special Functions, vol. 2. Gordon and Breach, New York (1986)Google Scholar
364. [PrBrMa-V3]
Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integral and Series. More Special Functions, vol. 3. Gordon and Breach, New York (1990)Google Scholar
365. [Psk05]
Pskhu, A.V.: On real zeros of a Mittag-Leffler-type function. Math. Notes. 77(4), 592–599 (2005) [translation from Russian Matematicheskie Zametki]Google Scholar
366. [Psk06]
Pskhu, A.V.: Partial Differential Equations of Fractional Order. Nauka, Moscow (2006, in Russian)Google Scholar
367. [RaScMa02]
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)
368. [Rab48a]
Rabotnov, Yu.N.: The equilibrium of an elastic medium with after-effect. Prikl. Mat. Mekh. 12, 53–62 (1948, in Russian)Google Scholar
369. [Rab69]
Rabotnov, Yu.N.: Creep Problems in Structural Members. North-Holland, Amsterdam (1969). [English translation of the 1966 Russian edition]
370. [Rab73]
Rabotnov, Yu.N.: On the Use of Singular Operators in the Theory of Viscoelasticity, Moscow, p. 50 (1973). Unpublished Lecture Notes for the CISM course on Rheology held in Udine, Oct 1973. http://www.cism.it
371. [Rab74]
Rabotnov, Yu.N.: Experimental Evidence of the Principle of Hereditary in Mechanics of Solids, Moscow, p. 80 (1974). Unpublished Lecture Notes for the CISM course on Experimental Methods in Mechanics, A) Rheology, held in Udine, 24–29 Oct 1974. http://www.cism.it
372. [Rab80]
Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics. MIR, Moscow (1980). [English translation, revised from the 1977 Russian edition]
373. [RaPaZv69]
Rabotnov, Yu.N., Papernik, L.H., Zvonov, E.N.: Tables of a Fractional-Exponential Function of Negative Parameter and Its Integral. Moscow, Nauka (1969, in Russian)Google Scholar
374. [Rai71]
Rainville, E.D.: Special Functions. Chelsea Publishing, Bronx (1971)
375. [RepSai00]
Repin, O.N., Saichev, A.I.: Fractional poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000)
376. [Rie49]
Riesz, M.: L’intégrales de Riemann–Liouville et le probléme de Cauchy. Acta Math. 81(1–2), 1–223 (1949)
377. [RogKor10]
Rogosin, S., Koroleva, A.: Integral representation of the four-parametric generalized Mittag-Leffler function. Lith. Math. J. 50(3), 337–343 (2010)
378. [RogMai11]
Rogosin, S., Mainardi, F.: The Legacy of A.Ya. Khintchine’s Work in Probability Theory. Cambridge Scientific Publishers, Cottenham (2011)Google Scholar
379. [RogMai14]
Rogosin, S., Mainardi, F.: George William Scott Blair – the pioneer of factional calculus in rheology. Commun. Appl. Ind. Math (2014, in press). [arxiv:1404.3295.v1]Google Scholar
380. [Ron92]
Ronkin, L.I.: Functions Of Completely Regular Growth. Kluwer Academic, Amsterdam (1992)
381. [Ros75]
Ross, B. (ed.) Fractional Calculus and Its Applications. Lecture Notes in Mathematics, vol. 457. Springer, Berlin (1975)Google Scholar
382. [Ros97]
Ross, S.M.: Introduction to Probability Models, 6th edn. Academic, New York (1997)
383. [Ros70]
Rossikhin, Yu.A.: Dynamic problems of linear viscoelasticity connected with the investigation of retardation and relaxation spectra. Ph.D. dissertation, Voronezh Polytechnic Institute, Voronezh (1970, in Russian)Google Scholar
384. [Ros10]
Rossikhin, Yu.A.: Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl. Mech. Rev. 63, 010701/1–12 (2010)Google Scholar
385. [RosShi07]
Rossikhin, Yu.A., Shitikova, M.V.: Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fract. Calc. Appl. Anal. 10(2), 111–121 (2007)
386. [RosShi10]
Rossikhin, Yu.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Review 63, 010801/1–52 (2010)Google Scholar
387. [Rub96]
Rubin, B.: Fractional Integrals and Potentials. Addison-Wesley & Longman, Harlow (1996)
388. [Rud74]
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1974)
389. [RuDiKi94]
Rusev, P., Dimovski, I., Kiryakova, V. (eds.): Transform Methods and Special Functions, Sofia 1994, Science Culture Technology, Singapore 1995Google Scholar
390. [RuDiKi96]
Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, Varna 1996 (Institute of Mathematics & Informatics, Bulgarian Academy of Sciences, Sofia 1998). [Proceedings of the 2-nd Int. Workshop TMSF, Varna, Bulgaria, 23–29 Aug 1996]Google Scholar
391. [SaiZas97]
Saichev, A., Zaslavsky, G.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)
392. [SaiKil98]
Saigo, M., Kilbas, A.A.: On Mittag-Leffler type function and applications. Integral Transforms Spec. Funct. 7(1–2), 97–112 (1998)
393. [SaiKil00]
Saigo, M., Kilbas, A.A.: Solution of a class of linear differential equations in terms of functions of Mittag-Lefflertype. Differ. Equ. 36(2), 193–200 (2000)
394. [SaKiMa93]
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York/London (1993). [Extended edition of the Russian original, Nauka i Tekhnika, Minsk (1987)]
395. [SanGer60]
Sansone, G., Gerretsen, J.: Lectures on the Theory of Functions of a Complex Variable. Holomorphic Functions, vol. I. Noordhoff, Groningen (1960)Google Scholar
396. [San88]
Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319–327 (1988)
397. [Sat99]
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
398. [Sax02]
Saxena, R.K.: Certain properties of generalized Mittag-Leffler function. In: Proceedings of the 3rd Annual Conference of the Society for Special Functions and Their Applications, Chennai, pp. 77–81 (2002)Google Scholar
399. [Sax09]
Saxena, R.K.: In memorium of Charles Fox. Frat. Calc. Appl. Anal. 12(3), 337–344 (2009)
400. [SaKaKi03]
Saxena, R.K., Kalla, S.L., Kiryakova, V.S.: Relations connecting multiindex Mittag-Leffler functions and Riemann–Liouville fractional calculus. Algebras Groups Geom. 20(4), 363–386 (2003)
401. [SaxNis10]
Saxena, R.K. and Nishimoto, K.: N-fractional calculus of generalized Mittag-Leffler functions. J. Fract. Calc. 37, 43–52 (2010)
402. [SaxNon04]
Saxena, R.K., Nonnenmacher, T.F.: Application of the H-function in Markovian and non-Markovian chain models. Fract. Calc. Appl. Anal. 7(2), 135–148 (2004)
403. [Sax-et-al10]
Saxena R.K., Pogány T.K., Ram J. and Daiya J.: Dirichlet averages of generalized multi-index Mittag-Leffler functions. Am J. Math. 3(4), 174–187 (2010)Google Scholar
404. [SaxSai05]
Saxena, R.K., Saigo, M.: Certain properties of fractional calculus operators associated with generalized Wright function. Fract. Calc. Appl. Anal. 6, 141–154 (2005)
405. [ScGoMa00]
Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)
406. [Sca-et-al03]
Scalas, E., Gorenflo, R., Mainardi, F. and Raberto, M.: Revisiting the derivation of the fractional diffusion equation. Fractals 11(Suppl. S), 281–289 (2003)Google Scholar
407. [Sch86]
Schneider, W.R.: Stable distributions: Fox function representation and generalization. In: Albeverio, S., Casati, G., Merlini, D. (eds.) Stochastic Processes in Classical and Quantum Systems, pp. 497–511. Springer, Berlin/Heidelberg (1986)
408. [Sch90]
Schneider, W.R.: Fractional diffusion. In: Lima, R., Streit, L., Vilela Mendes, D. (eds.) Dynamics and Stochastic Processes, Theory and Applications. Lecture Notes in Physics, vol. 355, pp. 276–286. Springer, Heidelberg (1990)
409. [Sch96]
Schneider, W.R.: Completely monotone generalized Mittag-Leffler functions. Expositiones Mathematicae 14, 3–16 (1996)
410. [SchWys89]
Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)
411. [SchSoVo12]
Schilling, R.L., Song, F., Vondraček, Z.: Bernstein Functions. Theory and Applications, 2nd edn. de Gruyter, Berlin (2012)Google Scholar
412. [ScoB44]
Scott-Blair, G.W.: Analytical and integrative aspects of the stress-strain-time problem. J. Sci. Instrum. 21, 80–84 (1944)
413. [ScoB47]
Scott-Blair, G.W.: The role of psychophysics in rheology. J. Colloid Sci. 2, 21–32 (1947)
414. [ScoB49]
Scott-Blair, G.W.: Survey of General and Applied Rheology. Pitman, London (1949)Google Scholar
415. [ScoB-Cop42a]
Scott Blair, G.W., Coppen, F.M.V.: The classification of rheological properties of industrial materials in the light of power-law relations between stress, strain, and time. J. Sci. Instrum. 19, 88–93 (1942)
416. [Sed94]
Sedletskii, A.M.: Asymptotic formulas for zeros of a function of Mittag-Leffler type. Anal. Math. 20, 117–132 (1994, in Russian)Google Scholar
417. [Sed98]
Sedletskii, A.M.: Approximation properties of systems of exponentials on a line and a half-line. Math. Sb. [Russian Acad. Sci. Sb. Math.] 189, 125–140 (1998)Google Scholar
418. [Sed00]
Sedletskii, A.M.: On zeros of a function of Mittag-Leffler type. Math. Notes. 68(5), 117–132 (2000) [translation from Russian Matematicheskie Zametki]Google Scholar
419. [Sed04]
Sedletskii, A.M.: Non-asymptotic properties of roots of a Mittag-Leffler type function. Math. Notes. 75(3), 372–386 (2004) [translation from Russian Matematicheskie Zametki]Google Scholar
420. [Sed07]
Sedletskii, A.M.: Asymptotics of zeros of the Mittag-Leffler type function of order 1/2. Vestn. Mosk. Univ., Ser. I, (1), 22–28 (2007) (Russian, English); translation in Mosc. Univ. Math. Bull. 62(1), 22–28 (2007)Google Scholar
421. [SeyHil05]
Seybold, H.J., Hilfer, R.: Numerical results for the generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 8, 127–139 (2005)
422. [SeyHil08]
Seybold, H.J., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 47(1), 69–88 (2008)
423. [She66]
Shermergor, T.D.: On application of operators of fractional differentiation for the description of hereditary properties of materials. Prikl. Mat. Tekh. Fiz. 6, 118–121 (1966)Google Scholar
424. [O’Sha18]
O’Shaughnessy, L.: Problem No. 433. Am. Math. Mon. 25, 172–173 (1918)Google Scholar
425. [ShuPra07]
Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)
426. [Shu01]
Shushin, A.I.: Anomalous two-state model for anomalous diffusion. Phys. Rev. E. 64, 051108 (2001)
427. [Sla66]
Slater L.J.: Generalized Hypergeometric Functions. Cambridge University Press, London (1966)
428. [Sne56]
Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry. Oliver and Boyd, London (1956)
429. [Sne74]
Sneddon, I.N.: The Use of Inegral Transforms. TATA McGraw-Hill, New Dehli (1974). [First published by McGraw-Hill in 1972]Google Scholar
430. [Sri63]
Srivastav, R.P.: A note on certain integral equations of Abel type. Proc. Edinb. Math. Soc. (Ser. II) 13, 271–272 (1963)Google Scholar
431. [SrGuGo82]
Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi/Madras (1982)Google Scholar
432. [SrOwNi84]
Srivastava, H.M., Owa, S., Nishimoto, K.: A note on a certain class of fractional differintegral equations. J. Coll. Eng. Nihon Univ. Ser. B 25, 69–73 (1984)
433. [SrOwNi85]
Srivastava, H.M., Owa, S., Nishimoto, K.: Some fractional differintegral equations. J. Math. Anal. Appl. 106(2), 360–366 (1985)
434. [SriTom09]
Srivastava H.M., Tomovski, $$\check{Z}$$.: Fractional claculus with an integral operator containing generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)Google Scholar
435. [Sti79]
Stiassnie, M.: On the application of fractional calculus on the formulation of viscoelastic models. Appl. Math. Model. 3, 300–302 (1979)
436. [Tak90]
Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, Manchester/New York (1990)
437. [Tar10]
Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg/Higher Education Press, Beijing (2010)
438. [Tem96]
Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)
439. [TikEid02]
Tikhonov, I.V., Éidel’man, Yu.S.: Inverse scattering transform for differential equations in Banach space and the distribution of zeros of an entire Mittag-Leffler type function. Differ. Uravn. (Differ. Equ.) 38(5), 637–644 (2002)Google Scholar
440. [Tit86]
Titchmarsh, E.C.: Introduction to the Theory of Fourier Transforms. Chelsea, New York (1986); The first edition in Oxford University Press, Oxford (1937)Google Scholar
441. [TorBag84]
Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivatives in the behavior of real materials. ASME J. Appl. Mech. 51, 294–298 (1984)
442. [Tri47]
Tricomi, F.G.: Sulle funzioni ipergeometriche confluenti. Annali di Matematica Pura ed Applicata. Serie Quarta 26, 141–175 (1947, in Italian)Google Scholar
443. [Uch03]
Uchaikin, V.V.: Relaxation processes and fractional differential equations. Int. J. Theor. Phys. 42(1), 121–134 (2003)
444. [Uch08]
Uchaikin, V.V.: Method of Fractional Derivatives. Artishok, Ul’yanovsk (2008, in Russian)Google Scholar
445. [Uch13a]
Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Background and Theory, vol. I. Springer, Berlin/Higher Education Press, Beijing (2013)Google Scholar
446. [Uch13b]
Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Applications, vol. II. Springer, Berlin/Higher Education Press, Beijing (2013)Google Scholar
447. [UcCaSi08]
Uchaikin, V.V., Cahoy, D.O., Sibatov, R.T.: Fractional processes: from Poisson to branching one. Int. J. Bifurc. Chaos 18, 1–9 (2008)
448. [UchZol99]
Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999)
449. [Veb74]
Veber, V.K.: A space of fundamental functions in the theory of Liouville differentiation. Trudy Kirgiz. Gos. Univ. Ser. Mat. Nauk. 9, 164–168 (1974, in Russian)Google Scholar
450. [Veb76]
Veber, V.K.: The structure of general solution of the system y (α) = Ay; 0 < a < 1. Trudy Kirgiz. Gos. Univ. Ser. Mat. Nauk Vyp. 11, 26–32 (1976, in Russian)Google Scholar
451. [Veb83a]
Veber, V.K.: Asymptotic behavior of solutions of a linear system of differential equations of fractional order. Stud. IntegroDiffer. Equ. 16, 19–25 (1983, in Russian)Google Scholar
452. [Veb83b]
Veber, V.K.: Passivity of linear systems of differential equations with fractional derivative and quasiasymptotic behaviour of solutions. Stud. IntegroDiffer. Equ. 16, 349–356 (1983, in Russian)Google Scholar
453. [Veb85a]
Veber, V.K.: Linear equations with fractional derivatives and constant coefficients in spaces of generalized functions. Stud. IntegroDiffer. Equ. 18, 306–312 (1985, in Russian)Google Scholar
454. [Veb85b]
Veber, V.K.: On the general theory of linear systems with fractional derivatives. Stud. IntegroDiffer. Equ. 18, 301–305 (1985, in Russian)Google Scholar
455. [Veb88]
Veber, V.K.: Solution of problem of Sturm–Liouville type. Stud. IntegroDiffer. Equ. 21, 245–249 (1988, in Russian)Google Scholar
456. [Vol70]
Volkovyskii, L.I., et al.: Collection of Exercises on the Theory of Functions of Complex Variable. Nauka, Moscow (1970, in Russian)Google Scholar
457. [VuGor95]
Tuan, V.K., Gorenflo, R.: Extrapolation to the limit for numerical fractional differentiation. ZAMM 75, 646–648 (1995)
458. [WanWen03]
Wang, X., Wen, Z.: Poisson fractional processes. Chaos Solitons Fractals 18, 169–177 (2003)
459. [WaWeZh06]
Wang, X., Wen, Z., Zhang, S.: Fractional Poisson process (II). Chaos Solitons Fractals 28, 143–14 (2006)
460. [Wat66]
Watson, G.N.: A Treatise on the Theory of Bessel Functions, 3rd edn. Cambridge University Press, Cambridge (1966); 1st edn., 1922; 2nd edn., 1944Google Scholar
461. [Weil82]
Weil, A.: Mittag-Leffier as I remember him. Acta Math. 148(1), 9–13 (1982)
462. [Wei94]
Weiss, G.H.: Aspects and Applications of Random Walks. North-Holland, Amsterdam (1994)Google Scholar
463. [Wei66]
Weierstrass, K.: Abhandlungen aus der Funktionenlehre. Springer, Berlin (1866)Google Scholar
464. [WeBoGr03]
West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)
465. [Wey17]
Weyl, H.: Bemerkungen zum Begriff des Differentialquotientten gebrochener Ordnung. Vierteljahresschrift der Naturforschenden Geselischaft in Zürich. 62(1–2), 296–302 (1917)Google Scholar
466. [WhiWat52]
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1952); reprinted 1990Google Scholar
467. [Wid46]
Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)Google Scholar
468. [Wie79]
Wiener, K.: On solutions of boundary value problems for differential equations of noninteger order. Math. Nachr. 88, 181–190 (1979)
469. [Wim05a]
Wiman, A.: Über den Fundamentalsatz der Theorie der Funkntionen E α(x). Acta Math. 29, 191–201 (1905)
470. [Wim05b]
Wiman, A.: Über die Nullstellen der Funkntionen E α(x). Acta Math. 29, 217–234 (1905)
471. [Wri33]
Wright, E.M.: On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 8, 71–79 (1933)
472. [Wri34]
Wright, E.M.: The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. (Ser. II) 38, 257–270 (1934)Google Scholar
473. [Wri35b]
Wright, E.M.: The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 10, 287–293 (1935)Google Scholar
474. [Wri40a]
Wright, E.M.: The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. (Ser. II) 46, 389–408 (1940)Google Scholar
475. [Wri40b]
Wright, E.M.: The generalized Bessel function of order greater than one. Q. J. Math. Oxf. Ser. 11, 36–48 (1940)
476. [Wri40c]
Wright, E.M.: The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. A 238, 423–451 (1940)
477. [Zas05]
Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)
478. [Zel-et-al70]
Zelenev, V.M., Meshkov, S.I., Rossikhin, Yu.A.: Damped vibrations of hereditary – elastic systems with weakly singular kernels. J. Appl. Mech. Tech. Phys. 11(2), 290–293 (1970)
479. [Zhe02]
Zheltukhina, N.: Asymptotic zero distribution of sections and tails of Mittag-Leffler functions. C. R. Acad. Sci. Paris Ser. I 335, 133–138 (2002)
480. [Zhu12]
Zhukovskaya, N.V.: Solutions of Euler-type homogeneous differential equations with finite number of fractional derivatives. Integral Transforms Spec. Funct. 23(3), 161–175 (2012)

## Authors and Affiliations

• Rudolf Gorenflo
• 1
• Anatoly A. Kilbas
• 2
• Francesco Mainardi
• 3
• Sergei V. Rogosin
• 4
1. 1.Free University Berlin Mathematical InstituteBerlinGermany
2. 2.Belarusian State University Department of Mathematics and MechanicsMinskBelarus
3. 3.University of Bologna Department of PhysicsBolognaItaly
4. 4.Belarusian State University Department of EconomicsMinskBelarus