Skip to main content

The Geometry of Fractal Percolation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 88))

Abstract

A well studied family of random fractals called fractal percolation is discussed. We focus on the projections of fractal percolation on the plane. Our goal is to present stronger versions of the classical Marstrand theorem, valid for almost every realization of fractal percolation. The extensions go in three directions:

\(\bullet \) the statements work for all directions, not almost all,

\(\bullet \) the statements are true for more general projections, for example radial projections onto a circle,

\(\bullet \) in the case \(\dim _H >1\), each projection has not only positive Lebesgue measure but also has nonempty interior.

Rams was partially supported by the MNiSW grant N201 607640 (Poland). The research of Simon was supported by OTKA Foundation # K 104745.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arhosalo, I., Järvenpää, E., Järvenpää, M., Rams, M., Shmerkin, P.: Visible parts of fractal percolation. Proc. Edinburgh Math. Soc. (Series 2), 55(02):311–331 (2012)

    Google Scholar 

  2. Chayes, J.T., Chayes, L., Durrett, R.: Connectivity properties of mandelbrot’s percolation process. Probability theory and related fields 77(3), 307–324 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chayes, L.: On the length of the shortest crossing in the super-critical phase of mandelbrot’s percolation process. Stochastic processes and their applications 61(1), 25–43 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dekking, F.M., Grimmett, G.R.: Superbranching processes and projections of random cantor sets. Probability theory and related fields 78(3), 335–355 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dekking, M.: Random cantor sets and their projections. Fractal Geom. Stochast. IV, 269–284 (2009)

    Google Scholar 

  6. Dekking, M., Meester, R.W.J.: On the structure of mandelbrot’s percolation process and other random cantor sets. J. Stat. Phys. 58(5), 1109–1126 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dekking, M., Simon, K.: On the size of the algebraic difference of two random cantor sets. Random Struct. Algorithms 32(2), 205–222 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K.J.: Random fractals. Math. Proc. Cambridge Philos. Soc 100(3), 559–582 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Falconer, K.J., Grimmett, G.R.: On the geometry of random cantor sets and fractal percolation. J. Theor. Probab. 5(3), 465–485 (1992)

    Google Scholar 

  10. Falconer, K.J., Grimmett, G.R.: Correction: On the geometry of random cantor sets and fractal percolation. J. Theor. Probab. 7(1), 209–210 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hawkes, J.: Trees generated by a simple branching process. J. Lond. Math. Soc. 2(2), 373–384 (1981)

    Article  MathSciNet  Google Scholar 

  12. Kahane, J.-P., Peyriere, J.: Sur certaines martingales de benoit mandelbrot. Adv. math. 22(2), 131–145 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades- divergence of high moments and dimension of the carrier. J. Fluid Mech. 62(2), 331–358 (1974)

    Article  MATH  Google Scholar 

  14. Mandelbrot, B.B: The fractal geometry of nature/revised and enlarged edition. p. 495. WH Freeman and Co., New York (1983)

    Google Scholar 

  15. Marstrand, J.M.: Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 3(1), 257–302 (1954)

    Article  MathSciNet  Google Scholar 

  16. Mauldin, R.D., Williams, S.C.: Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc 295(1), 325–346 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mora, P., Simon, K., Solomyak, B.: The lebesgue measure of the algebraic difference of two random cantor sets. Indagationes Mathematicae 20(1), 131–149 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rams, M., Simon, K.: The dimension of projections of fractal percolations. J. Stat. Phys 154(3), 633–655 (2014)

    Google Scholar 

  19. Rams, M., Simon, K.: Projections of fractal percolations. To appear in Ergodic Theor. Dyn.Syst. (2013). doi:10.1017/etds.2013.45

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rams, M., Simon, K. (2014). The Geometry of Fractal Percolation. In: Feng, DJ., Lau, KS. (eds) Geometry and Analysis of Fractals. Springer Proceedings in Mathematics & Statistics, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43920-3_11

Download citation

Publish with us

Policies and ethics