Skip to main content

Mandelbrot Cascades and Related Topics

  • Conference paper
  • First Online:
Geometry and Analysis of Fractals

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 88))

Abstract

This article is an extended version of the talk given by the author at the conference “Advances in fractals and related topics”, in December 2012 at the Chinese Hong-Kong University. It gathers recent advances in Mandelbrot cascades theory and related topics, namely branching random walks, directed polymers on disordered trees, multifractal analysis, and dynamical systems.

The author thanks Dr Xiong Jin for his kind help in the figures elaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aidekon, E.: Convergence in law of the minimum of a branching random walk. Ann. Probab. 41, 1362–1426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aidekon, E., Shi, Z.: The Seneta-Heyde scaling for the branching random walk. Ann. Probab. 42, 959–993 (2014)

    Google Scholar 

  3. Alsmeyer, G., Biggins, J.-D., Meiners, M.: The functional equation of the smoothing transformation. Ann. Probab. 140, 2069–2105 (2012)

    Article  MathSciNet  Google Scholar 

  4. Alsmeyer, G., Meiners, M.: Fixed points of inhomogeneous smoothing transforms. J. Differ. Equ. Appl. 18, 1287–1304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alsmeyer, G., Meiners, M.: Fixed points of the smoothing transformation: two-sided case. Probab. Theory Relat. Fields 155, 165–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Astala, K., Jones, P., Kupiainen, A., Saksman, E.: Random conformal weldings. Acta Math. 207(2), 203–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attia, N., Barral, J.: Hausdorff and packing spectra, large deviations, and free energy for branching random walks. in \({\mathbb{R}}^d\). To appear in Comm. Math. Phys (2014). arXiv:1305.2034

  8. Bacry, E., Muzy, J.F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449–475 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barral, J.: Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theor. Probab. 13, 1027–1060 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barral, J., Ben Nasr, F., Peyrière, J.: Comparing multifractal formalisms: the neighboring boxes conditions. Asian J. Math. 7, 149–166 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Barral, J., Fan, A.H.: Covering numbers of different points in the Dvoretzky covering. Bull. Sci. Math. 129, 275–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barral, J., Fan, A.-H., Peyrière, J.: Mesures engendrées par multiplications. In: Quelques Interactions Entre Analyse, Probabilités et Fractals, Panoramas et Synthéses, vol. 32, Soc. Math., France (2010)

    Google Scholar 

  13. Barral, J., Jin, X.: Multifractal analysis of complex random cascades. Commun. Math. Phys. 219, 129–168 (2010)

    Article  MathSciNet  Google Scholar 

  14. Barral, J., Jin, X., Mandelbrot, B.B.: Uniform convergence for complex \([0,1]\)-martingales. Ann. Appl. Probab. 20, 1205–1218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barral, J., Jin, X., Mandelbrot, B.B.: Convergence of signed multiplicative cascades. Ann. Appl. Probab. 20, 1219–1252 (2010)

    Google Scholar 

  16. Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323, 451–485 (2013)

    Google Scholar 

  17. Barral, J., Kupiainen, A., Nikula, M., Saksman, E., Webb, C.: Critical Mandelbrot cascades. Commun. Math. Phys. 325, 685–711 (2014)

    Google Scholar 

  18. Barral, J., Kupiainen, A., Nikula, M., Saksman, E., Webb, C.: Basic properties of critical lognormal multiplicative chaos. To appear in Ann. Probab. arXiv:1303.4548

  19. Barral, J., Mandelbrot, B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Barral, J., Mandelbrot, B.: Introduction to infinite products of random independent functions (Random multiplicative multifractal measures, Part I). In: Lapidus, M.L., van Frankenhuysen, M. (eds.) Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot. Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2, pp. 3–16. AMS, Providence, RI (2004)

    Google Scholar 

  21. Barral, J., Mandelbrot, B.: Non-degeneracy, moments, dimension, and multifractal analysis for random multiplicative measures (Random multiplicative multifractal measures, Part II), pp. 17–52. In: Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2. AMS, Providence, RI (2004)

    Google Scholar 

  22. Barral, J., Mandelbrot, B.B.: Fractional multiplicative processes. Ann. Inst. Henry Poincaré Probab. Stat. 45, 1116–1129 (2009)

    Google Scholar 

  23. Barral, J., Peyrière, J., Wen, Z.: Dynamics of Mandelbrot cascades. Probab. Theory Relat. Fields 144, 615–631 (2009)

    Article  MATH  Google Scholar 

  24. Barral, J., Rhodes, R., Vargas, V.: Limiting laws of supercritical branching random walks, C. R. Acad. Sci. Paris Ser. I 350, 535–538 (2012)

    Google Scholar 

  25. Barral, J., Seuret, S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11, 589–614 (2005)

    Google Scholar 

  26. Barral, J., Seuret, S.: Heterogeneous ubiquitous systems in \(\mathbb{R}^d\) and Hausdorff dimension. Bull. Braz. Math. Soc. 38, 467–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Barral, J., Seuret, S.: The singularity spectrum of Lévy processes in multifractal time. Adv. Math. 214, 437–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Benjamini, I., Schramm, O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289, 653–662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  30. Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Biggins, J.D.: Growth rates in the branching random walk. Z. Wahrsch. Verw. Geb. 48(48), 17–34 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Biggins, J.D., Kyprianou, A.: Seneta-Heyde norming in the branching random walk. Ann. Probab. 25, 337–360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Biggins, J.D., Kyprianou, A.: Measure change in multitype branching. Adv. Appl. Probab. 36, 544–581 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Biggins, J.D., Kyprianou, A.: The smoothing transform: the boundary case. Electron. J. Probab. 10, 609–631 (2005)

    Article  MathSciNet  Google Scholar 

  36. Biggins, J.D., Hambly, B.M., Jones, O.D.: Multifractal spectra for random self-similar measures via branching processes. Adv. Appl. Probab. 43, 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bovier, A.: Statistical mechanics of disordered system. A mathematical perspective. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 18. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  38. Bramson, M.: Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44(285), iv\(+\)190 pp. (1983)

    Google Scholar 

  39. Buraczewski, D.: On tails of fixed points of the smoothing transform in the boundary case. Stoch. Process. Appl. 119(11), 3955–3961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Carpentier, D., Le Doussal, P.: Glass transition of a particle in a random potential, front selection in nonlinear RG and entropic phenomena in Liouville and Sinh-Gordon models. Phys. Rev. E 63, 026110 (2001)

    Article  Google Scholar 

  41. Chevillard, L., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos for symmetric isotropic matrices. J. Stats. Phys. 150, 678–703 (2013)

    Google Scholar 

  42. Collet, P., Koukiou, F.: Large deviations for multiplicative chaos. Commun. Math. Phys. 147, 329–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. In: Applications of Mathematics, vol. 38, 2nd edn. Springer, New York (1998)

    Google Scholar 

  44. Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses and traveling waves. J. Stat. Phys. 51, 817 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Derrida, B., Evans, M.R., Speer, E.R.: Mean field theory of directed polymers with random complex weights. Commun. Math. Phys. 156(2), 221–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dodson, M.M., Melián, M.V., Pestana, D., Vélani, S.L.: Patterson measure and ubiquity. Ann. Acad. Sci. Fenn. Ser. A I Math. 20 37–60 (1995)

    Google Scholar 

  47. Duplantier, B., Sheffield, S.: Duality and KPZ in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009)

    Article  MathSciNet  Google Scholar 

  48. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. arXiv:1206.1671

  50. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ formula. arXiv:1212.0529

  51. Durrett, R., Liggett, T.: Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Geb. 64, 275–301 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Falconer, K.J.: The multifractal spectrum of statistically self-similar measures. J. Theor. Probab. 7(3), 681–702 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Falconer, K.J.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003)

    Google Scholar 

  54. Fan, A.H.: Chaos additifs et chaos multiplicatifs de Lévy. C. R. Acad. Sci. Paris Sér. I 308, 151–154 (1989)

    Google Scholar 

  55. Fan, A.H.: Sur le chaos de Lévy d’indice \(0<\alpha <1\). Ann. Sci. Math. Que. 21, 53–66 (1997)

    Google Scholar 

  56. Fan, A.-H.: Some topics in the theory of multiplicative chaos. In: Bandt, Ch., Zaehle, M., Mosco, U. (eds.) Progress in Probability, vol. 57, pp. 119–134. Birkhäuser, Basel (2004)

    Google Scholar 

  57. Franchi, J.: Chaos multiplicatif: un traitement simple et complet de la fonction de partition. Séminaire Probab. Strasbourg 29, 194–201 (1995)

    MathSciNet  Google Scholar 

  58. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency in turbulence. Proceedings of the International School of Physics “Enrico Fermi”. In: Ghil, M. (ed.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, course 88, pp. 84–88. North Holland, Amsterdam (1985)

    Google Scholar 

  59. Guivarch, Y.: Sur une extension de la notion de loi semi-stable. Ann. Inst. Henry Poincaré Probab. Stat. 26, 261–285 (1990)

    MathSciNet  Google Scholar 

  60. Holley, R., Waymire, E.C.: Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2, 819–845 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Jaffard, S.: Oscillations spaces: properties and applications to fractal and multifractal functions. J. Math. Phys. 39(8), 4129–4141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Jaffard, S.: The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Jaffard, S.: On lacunary wavelet series. Ann. Appl. Probab. 10, 313–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Jaffard, S.: On the Frisch-Parisi conjecture. J. Math. Pures Appl. 79(6), 525–552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jaffard, S.: Wavelets techniques in multifractal analysis. In: Lapidus, M., Frankenhuijsen, M.V. (eds.) Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics, vol. 72(2), pp. 91–151 (2004)

    Google Scholar 

  67. Jin, X.: The graph and range singularity spectra of \(b\)-adic independent cascade functions. Adv. Math. 226, 4987–5017 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Jin, X.: Dimension result and KPZ formula for two-dimensional multiplicative cascade processes. Ann. Probab. 40, 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Jin, X.: A uniform result for two dimensional fractional multiplicative processes. Ann. Inst. H. Poincaré Probab. Stat. 50(2), 512–523 (2014)

    Google Scholar 

  70. Johnson, T., Waymire, E.: Tree polymers in the infinite volume limit at critical strong disorder. J. Appl. Probab. 48, 885–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kahane, J.-P.: Sur le modele de turbulence de Benoit Mandelbrot. C. R. Acad. Sci. Paris, 278, 567–569 (1974)

    Google Scholar 

  72. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Que. 9, 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  73. Kahane, J.-P.: Positive martingales and random measures. Chi. Ann. Math. 8B1, 1–12 (1987)

    Google Scholar 

  74. Kahane, J.-P., Peyrière, J.: Sur certaines martingales de B. Mandelbrot Adv. Math. 22, 131–145 (1976)

    Article  MATH  Google Scholar 

  75. Kahane, J.-P.: Multiplications aléatoires et dimensions de Hausdorff. Ann. Inst. Henri Poincaré Probab. Stat. 23, 289–296 (1987)

    MathSciNet  MATH  Google Scholar 

  76. Kahane, J.-P.: Produits de poids aléatoires indépendants et applications. In: Fractal Geometry and Analysis (Montreal, PQ, 1989), pp. 277–324. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 346. Kluwer, Dordrecht (1991)

    Google Scholar 

  77. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett A 3(8), 819–826 (1988)

    Google Scholar 

  78. Kolmogorov, A.N.: Précisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds élevés, Mécanique de la turbulence, Colloq. Intern. CNRS, Marseille (1961) [Editions CNRS, pp. 447–451 (1962)]

    Google Scholar 

  79. Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. arXiv:1307.6117v1

  80. Liu, Q.: Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. Appl. Probab. 30, 85–112 (1998)

    Article  MATH  Google Scholar 

  81. Liu, Q.: On generalized multiplicative cascades. Stoch. Process. Appl. 86(2), 263–286 (2000)

    Article  MATH  Google Scholar 

  82. Liu, Q.: Asymptotic properties and absolute continuity of laws stable by random weightedmean. Stoch. Proc. Appl. 95, 83–107 (2001)

    Article  MATH  Google Scholar 

  83. Madaule, T.: Convergence in law for the branching random walk seen from its tip. arXiv:1107.2543

  84. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. Statistical models and turbulence. In: Rosenblatt, M., Atta, C.V. (eds.) Lectures Notes in Physics, vol. 12, 333–351. Springer, New York (1972)

    Google Scholar 

  85. Mandelbrot, B.B.: Multiplications aléatoires itérées et distributions invariantes par moyennes pondérées. C. R. Acad. Sci. Paris 278, 289–292 and 355–358 (1974)

    Google Scholar 

  86. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  87. Mattila, P.: Geometry of sets and measures in Euclidean spaces, fractals and rectifiability. In: Cambridges Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  88. Molchan, G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179(3), 681–702 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  89. Olsen, L.: Random geometrically graph directed self-similar multifractals, Pitman Res. Notes Math. Ser. 307 (1994)

    Google Scholar 

  90. Olsen, L.: A multifractal formalism. Adv. Math. 116, 92–195 (1995)

    Article  MathSciNet  Google Scholar 

  91. Ossiander M., Waymire, E.C.: Statistical estimation for multiplicative cascades. Ann. Stat. 28, 1–29 (2000)

    Google Scholar 

  92. Peyrière, J.: Turbulence et dimension de Hausdorff. C. R. Acad. Sci. Paris 278, 567–569 (1974)

    MATH  Google Scholar 

  93. Peyrière, J.: Calculs de dimensions de Hausdorff. Duke Math. J. 44, 591–601 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  94. Peyrière, J.: A singular random measure generated by spliting \([0,1]\). Z. Wahrsch. Verw. Geb. 47, 289–297 (1979)

    Article  MATH  Google Scholar 

  95. Peyrière, J.: Recent results on Mandelbrot multiplicative cascades. In: Bandt, Ch., Graf, S., Zähle, M. (eds.) Fractal Geometry and Stochastics II, pp. 147–159. Progress in Probability, vol. 46. Birkhäuser, Basel (2000)

    Google Scholar 

  96. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  97. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. arXiv:0807.1036

  98. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. arXiv:1305.6221

  99. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. arXiv:1012.4797

  100. Shepp, L.: Covering the line with random arcs. Z. Wahrsch. Verw. Geb. 23, 163–170 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  101. Waymire, E.C., Williams, S.C.: A cascade decomposition theory with applications to Markov and exchangeable cascades. Trans. Am. Math. Soc. 348, 585–632 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  102. Waymire, E.C., Williams, S.C.: \(T\)-martingales, size-biasing and tree polymer cascades. In: Barral, J., Seuret, S. (eds.) Further Developments in Fractals and Related Fields. Birkhäuser, Basel (2013)

    Google Scholar 

  103. Webb, C.: Exact asymptotics of the freezing transitions of a logarithmically correlated random energy model. J. Stat. Phys. 145, 1595–1619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Barral .

Editor information

Editors and Affiliations

Appendix: Hausdorff Measures and Dimension

Appendix: Hausdorff Measures and Dimension

Given \(g:\mathbb {R}_+\rightarrow \mathbb {R}_+\) a continuous non-decreasing function near 0 and such that \(g(0)=0\), and \(E\) a subset of \([0,1]\), the Hausdorff measure of \(E\) with respect to the gauge function \(g\) is defined as

$$ \mathcal {H}^g(E)=\lim _{\delta \rightarrow 0^+}\inf \Big \{\sum _{i\in \mathbb {N}}g(\text {diam}(U_i))\Big \}, $$

the infimum being taken over all the countable coverings \((U_i)_{i\in \mathbb {N}}\) of \(E\) by subsets of \(K\) of diameters less than or equal to \(\delta \).

If \(s\in \mathbb {R}_+^*\) and \(g(u)=u^s\), then \({\mathcal {H}}^g(E)\) is also denoted \({\mathcal {H}}^s(E)\) and called the \(s\)-dimensional Hausdorff measure of \(E\). Then, the Hausdorff dimension of \(E\) is defined as

$$ \dim E=\sup \{s> 0: {\mathcal {H}}^s(E)=\infty \}=\inf \{s> 0: {\mathcal {H}}^s(E)=0\}, $$

with the convention \(\sup \emptyset = 0\) and \(\inf \emptyset =\infty \).

For more information the reader is referred to [Fal03, Mat95].

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barral, J. (2014). Mandelbrot Cascades and Related Topics. In: Feng, DJ., Lau, KS. (eds) Geometry and Analysis of Fractals. Springer Proceedings in Mathematics & Statistics, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43920-3_1

Download citation

Publish with us

Policies and ethics